[1] 李佳红, 付娜, 牛学敏,等. 573例原发性肝癌病因及临床特点分析. 实用肝脏病杂志, 2015, 18(4):399-402.
[2] Guan T , Shang W , Li H , et al. From detection to resection: photoacoustic tomography and surgery guidance with indocyanine green loaded gold nanorod liposome core-shell nanoparticles in liver cancer. Bioconjug Chem, 2017, 28(4):1221-1228.
[3] 张萌, 叶啟发, 钟自彪, 等.原发性肝癌肝移植的研究进展. 中华消化外科杂志, 2017, 16(2):215-220.
[4] Ohki T , Sato K , Yamagami M , et al. Efficacy of transcatheter arterial chemoembolization followed by sorafenib for intermediate/advanced hepatocellular carcinoma in patients in Japan: a retrospective analysis.Clin Drug Investig, 2015, 35(11):751-759.
[5] Ako S , Nakamura S , Nouso K , et al. Transcatheter arterial chemoembolization to reduce size of hepatocellular carcinoma before radiofrequency ablation.Acta Med Okayama, 2018, 72(1):47-52.
[6] Yun G , Kim YH , Lee YJ , et al. Tumor heterogeneity of pancreas head cancer assessed by CT texture analysis: Association with survival outcomes after curative resection. Sci Rep, 2018, 8(1):7226-7235.
[7] 中华人民共和国卫生部. 原发性肝癌诊疗规范(2011年版). 中华肝脏病杂志, 2012, 20(6):929-946.
[8] Song B, Chung Y, Kim JA, et al. Association between insulin‐like growth factor‐2 and metastases after transcatheter arterial chemoembolization in patients with hepatocellular carcinoma. Cancer, 2015, 91(12):2386-2393.
[9] Hong CX , Lyu LW , Hua LZ , et al. Epidemiology and management of acute kidney injury in hepatocellular carcinoma patients undergoing transcatheter arterial chemoembolization. Curr Protein Pept Sci, 2017, 18(12):1218-1223.
[10] Kubota K , Hidaka H , Nakazawa T , et al. Prospective randomized controlled study of the efficacy of transcatheter arterial chemoembolization with miriplatin for hepatocellular carcinoma. Hepatol Res, 2018, 48(3):98-106.
[11] Minami Y , Takita M , Tsurusaki M , et al. Semiquantitative prediction of early response of conventional transcatheter arterial chemoembolization for hepatocellular carcinoma using postprocedural plain cone-beam computed tomography. Hepatol Res, 2017, 47(3):113-119.
[12] Fritz B, Müller DA, Sutter R , et al. Magnetic resonance imaging–based grading of cartilaginous bone tumors: added value of quantitative texture analysis. Invest Radiol, 2018, 53(11):663-672.
[13] Liu J , Mao Y , Li Z , et al. Use of texture analysis based on contrast-enhanced MRI to predict treatment response to chemoradiotherapy in nasopharyngeal carcinoma. J Magn Reson Imaging, 2016, 44(2):445-455.
[14] 孟闫凯, 张翀达, 张红梅, 等. MRI纹理分析对局部进展期直肠癌新辅助放化疗疗效的预测价值. 中华放射学杂志, 2017, 51(12):944-948.
[15] 傅菁, 崔凯, 邢力刚, 等. 18F-FDG PET图像纹理分析在非小细胞肺癌中的应用. 中华肿瘤防治杂志, 2017, 24(6):421-426.
[16] Lubner MG, Smith AD, Sandrasegaran K, et al. CT texture analysis: definitions, applications, biologic correlates, and challenges. Radiographics, 2017, 37(5):1483-1503.
[17] Lubner MG, Stabo N, Lubner SJ, et al. CT textural analysis of hepatic metastatic colorectal cancer: pre-treatment tumor heterogeneity correlates with pathology and clinical outcomes. Abdom Imaging, 2015, 40(7):2331-2337.
[18] Li Z , Mao Y , Huang W , et al. Texture-based classification of different single liver lesion based on SPAIR T2W MRI images.BMC Med Imaging, 2017, 17(1):42-50.
[19] House MJ, Bangma SJ , Thomas M , et al. Texture-based classification of liver fibrosis using MRI.J Magn Reson Imaging, 2015, 41(2):322-328.
[20] Reiner CS , Gordic S , Puippe G , et al. Histogram analysis of CT perfusion of hepatocellular carcinoma for predicting response to transarterial radioembolization: value of tumor heterogeneity assessment.Cardiovasc Intervent Radiol, 2016, 39(3):400-408. |