[1] 任国亮, 李连生, 刘刚, 等. 热量限制饮食对非酒精性脂肪性肝病患者胰岛素抵抗,血脂和氧化应激指标的影响. 实用肝脏病杂志, 2020, 23(2):219-222. [2] Cetin EG, Demir N, Sen I. The relationship between insulin resistance and liver damage in non-alcoholic fatty liver patients. Sisli Etfal Hastan Tip Bul, 2020, 54(4):411-415. [3] Dang Z, Li Q, Sun S, et al. The medicinal plant pair bupleurum Chinense-scutellaria baicalensis - metabolomics and metallomics analysis in a model for alcoholic liver injury. Front Pharmacol, 2019, 20(10):254. [4] Shiu LY, Huang HH, Chen CY, et al. Reparative and toxicity-reducing effects of liposome-encapsulated saikosaponin in mice with liver fibrosis. Biosci Rep, 2020, 28(8):BSR20201219. [5] Feng Y, Weng H, Ling L, et al. Modulating the gut microbiota and inflammation is involved in the effect of Bupleurum polysaccharides against diabetic nephropathy in mice. Int J Biol Macromol, 2019, 132:1001-1011. [6] Skrypnyk IМ, Maslova GS, Skrypnyk R, et al. Arginine/citrulline cycle changes in diet-induced rat model of non-alcoholic fatty liver disease. Wiad Lek, 2020, 73(6):1087-1092. [7] Eslam M, Sanyal AJ, George J, et al. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology, 2020, 158(7):1999-2014.e1. [8] Huang TD, Behary J, Zekry A. Non-alcoholic fatty liver disease: a review of epidemiology, risk factors, diagnosis and management.Intern Med J, 2020, 50(9):1038-1047. [9] Ruissen MM, Mak AL, Beuers U, et al. Non-alcoholic fatty liver disease: a multidisciplinary approach towards a cardiometabolic liver disease. Eur J Endocrinol, 2020, 183(3):R57-R73. [10] Perakakis N, Stefanakis K, Mantzoros CS. The role of omics in the pathophysiology, diagnosis and treatment of non-alcoholic fatty liver disease. Metabolism, 2020, 111S:154320. [11] Pan L, Weng H, Li H, et al. Therapeutic effects of bupleurum polysaccharides in streptozotocin induceddiabetic mice. PLoS One, 2015, 10(7):e0133212. [12] Li X, Li X, Huang N, et al. A comprehensive review and perspectives on pharmacology and toxicology of saikosaponins. Phytomedicine,2018, 15(50):73-87. [13] Wang Y, Nakajima T, Gonzalez FJ, et al. PPARsas metabolic regulators in the liver: lessons from liver-specific PPAR-Null mice. Int J Mol Sci, 2020, 21(6):2061. [14] Shaunak M, Byrne CD, Davis N, et al. Non-alcoholic fatty liver disease and childhood obesity. Arch Dis Child, 2021, 106(1):3-8. [15] Lefere S, Puengel T, Hundertmark J, et al. Differential effects of selective- and pan-PPAR agonists on experimental steatohepatitis and hepatic macrophages. J Hepatol, 2020, 73(4):757-770. [16] He Y, Yang W, Gan L, et al. Silencing HIF-1α aggravates non-alcoholic fatty liver disease in vitro through inhibiting PPAR-α/ANGPTL4 singling pathway. Gastroenterol Hepatol, 2020, 23:S210-215. [17] Den Hartogh DJ, Vlavcheski F, Giacca A, et al. Attenuation of free fatty acid (FFA)-induced skeletal muscle cell insulin resistance by resveratrol is linked to activation of AMPK and inhibition of mTOR and p70 S6K. Int J Mol Sci, 2020, 21(14):4900. [18] Su M, Sun L, Li W, et al. Metformin alleviates hyperuricaemia-induced serum FFA elevation and insulin resistance by inhibiting adipocyte hypertrophy and reversing suppressed white adipose tissue beiging. Clin Sci (Lond), 2020, 26(12):1537-1553. [19] Zhang J, Du H, Shen M, et al. Kangtaizhi granule alleviated nonalcoholic fatty liver disease in high-fat diet-fed rats and HepG2 cells via AMPK/mTOR signaling pathway. J Immunol Res, 2020, 20:2020:3413186. [20] Zhang J, Zhang SD, Wang P, et al. Pinolenic acid ameliorates oleic acid-induced lipogenesis and oxidative stress via AMPK/SIRT1 signaling pathway in HepG2 cells. Eur J Pharmacol, 2019, 15:861:172618. |