[1]Seitz HK, Bataller R, Cortez-Pinto H, et al. Alcoholic liver disease. Nat Rev Dis Primers, 2018, 4(1): 16. [2]Tilg H, Cani PD, Mayer EA. Gut microbiome and liver diseases. Gut, 2016, 65(12): 2035-2044. [3]Sarin SK, Pande A, Schnabl B. Microbiome as a therapeutic target in alcohol-related liver disease. J Hepatol, 2019, 70(2): 260-272. [4]Mutlu EA, Gillevet PM, Rangwala H, et al. Colonic microbiome is altered in alcoholism. Am J Physiol Gastrointest Liver Physiol, 2012, 302(9): G966-978. [5]Yan AW, Fouts DE, Brandl J, et al. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology, 2011, 53(1): 96-105. [6]Bull-Otterson L, Feng W, Kirpich I, et al. Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment. PLoS One, 2013, 8(1): e53028. [7]Bluemel S, Wang L, Kuelbs C, et al. Intestinal and hepatic microbiota changes associated with chronic ethanol administration in mice. Gut Microbes, 2020, 11(3): 265-275. [8]Lowe PP, Gyongyosi B, Satishchandran A, et al. Alcohol-related changes in the intestinal microbiome influence neutrophil infiltration, inflammation and steatosis in early alcoholic hepatitis in mice. PLoS One, 2017, 12(3): e0174544. [9]Seo B, Jeon K, Moon S, et al. Roseburia spp. abundance associates with alcohol consumption in humans and its administration ameliorates alcoholic fatty liver in mice. Cell Host Microbe, 2020, 27(1): 25-40,e26. [10] Llopis M, Cassard AM, Wrzosek L, et al. Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease. Gut, 2016, 65(5): 830-839. [11] Engen PA, Green SJ, Voigt RM, et al. The gastrointestinal microbiome: Alcohol effects on the composition of intestinal microbiota. Alcohol Res, 2015, 37(2): 223-236. [12] 栗红江, 何福亮, 陈来印. 酒精性肝病患者血清LP、LPO、NOS水平和肠道菌群分布变化分析. 实用肝脏病杂志, 2020, 23(4): 536-539. [13] 延喜胜, 李伟, 王剑. 酒精性肝病患者血清细胞因子水平和肠道菌群分布变化研究. 实用肝脏病杂志, 2019, 22(4): 518-521. [14] Schnabl B, Brenner DA. Interactions between the intestinal microbiome and liver diseases. Gastroenterology, 2014, 146(6): 1513-1524. [15] Chen P, Torralba M, Tan J, et al. Supplementation of saturated long-chain fatty acids maintains intestinal eubiosis and reduces ethanol-induced liver injury in mice. Gastroenterology, 2015, 148(1): 203-214 e216. [16] Bjorkhaug ST, Aanes H, Neupane SP, et al. Characterization of gut microbiota composition and functions in patients with chronic alcohol overconsumption. Gut Microbes, 2019, 10(6): 663-675. [17] Hartmann P, Hochrath K, Horvath A, et al. Modulation of the intestinal bile acid/farnesoid X receptor/fibroblast growth factor 15 axis improves alcoholic liver disease in mice. Hepatology, 2018, 67(6): 2150-2166. [18] Chu H, Duan Y, Lang S, et al. The Candida albicans exotoxin candidalysin promotes alcohol-associated liver disease. J Hepatol, 2020, 72(3): 391-400. [19] Yang AM, Inamine T, Hochrath K, et al. Intestinal fungi contribute to development of alcoholic liver disease. J Clin Invest, 2017, 127(7): 2829-2841. [20] Jiang L, Lang S, Duan Y, et al. Intestinal virome in patients with alcoholic hepatitis. Hepatology, 2020, 72(6): 2182-2196. [21] Zuo T, Lu XJ, Zhang Y, et al. Gut mucosal virome alterations in ulcerative colitis. Gut, 2019, 68(7): 1169-1179. [22] Bajaj JS. Alcohol, liver disease and the gut microbiota. Nat Rev Gastroenterol Hepatol, 2019, 16(4): 235-246. [23] Paone P, Cani PD. Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut, 2020, 69(12): 2232-2243. [24] Hartmann P, Chen P, Wang HJ, et al. Deficiency of intestinal mucin-2 ameliorates experimental alcoholic liver disease in mice. Hepatology, 2013, 58(1): 108-119. [25] Rao RK. Acetaldehyde-induced increase in paracellular permeability in Caco-2 cell monolayer. Alcohol Clin Exp Res, 1998, 22(8): 1724-1730. [26] Abdelmegeed MA, Banerjee A, Jang S, et al. CYP2E1 potentiates binge alcohol-induced gut leakiness, steatohepatitis, and apoptosis. Free Radic Biol Med, 2013, 65: 1238-1245. [27] Chen P, Starkel P, Turner JR, et al. Dysbiosis-induced intestinal inflammation activates tumor necrosis factor receptor I and mediates alcoholic liver disease in mice. Hepatology, 2015, 61(3): 883-894. [28] Tripathi A, Debelius J, Brenner DA, et al. The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol, 2018, 15(7): 397-411. [29] Bala S, Csak T, Saha B, et al. The pro-inflammatory effects of miR-155 promote liver fibrosis and alcohol-induced steatohepatitis. J Hepatol, 2016, 64(6): 1378-1387. [30] Shao T, Zhao C, Li F, et al. Intestinal HIF-1alpha deletion exacerbates alcoholic liver disease by inducing intestinal dysbiosis and barrier dysfunction. J Hepatol, 2018, 69(4): 886-895. [31] Wang Y, Liu Y, Sidhu A, et al. Lactobacillus rhamnosus GG culture supernatant ameliorates acute alcohol-induced intestinal permeability and liver injury. Am J Physiol Gastrointest Liver Physiol, 2012, 303(1): G32-41. [32] Li HS, Zhou YN, Li L, et al. HIF-1alpha protects against oxidative stress by directly targeting mitochondria. Redox Biol, 2019, 25: 101109. [33] Duan Y, Llorente C, Lang S, et al. Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature, 2019, 575(7783): 505-511. [34] Zhou R, Llorente C, Cao J, et al. Deficiency of intestinal alpha1-2-fucosylation exacerbates ethanol-induced liver disease in mice. Alcohol Clin Exp Res, 2020, 44(9): 1842-1851. [35] Wang L, Fouts DE, Starkel P, et al. Intestinal REG3 lectins protect against alcoholic steatohepatitis by reducing mucosa-associated microbiota and preventing bacterial translocation. Cell Host Microbe, 2016, 19(2): 227-239. [36] Hendrikx T, Duan Y, Wang Y, et al. Bacteria engineered to produce IL-22 in intestine induce expression of REG3G to reduce ethanol-induced liver disease in mice. Gut, 2019, 68(8): 1504-1515. [37] Wrzosek L, Ciocan D, Hugot C, et al. Microbiota tryptophan metabolism induces aryl hydrocarbon receptor activation and improves alcohol-induced liver injury. Gut, 2021, 70(7): 1299-1308. [38] Lang S, Duan Y, Liu J, et al. Intestinal fungal dysbiosis and systemic immune response to fungi in patients with alcoholic hepatitis. Hepatology, 2020, 71(2): 522-538. |