[1] Aydın MM, Akçalı KC. Liver fibrosis. Turk J Gastroenterol, 2018, 29 (1): 14-21. [2] Sookoian S, Pirola CJ, Valenti L, et al. Genetic pathways in nonalcoholic fatty liver disease: Insights from systems biology. Hepatology, 2020, 72 (1): 330-346. [3] 王雨,王楠,刘媛媛,等.草质素对非酒精性脂肪性肝炎大鼠肝脂肪变和肝内氧化应激的影响.实用肝脏病杂志,2020,23(5):626-629. [4] Zheng Y, Liu T, Wang Z, et al. Low molecular weight fucoidan attenuates liver injury via SIRT1/AMPK/PGC1α axis in db/db mice. Int J Biol Macromol, 2018, 112: 929-936. [5] Maruyama H, Kiyono S, Kondo T, et al. Palmitate-induced regulation of PPARγ via PGC1α: a mechanism for lipid accumulation in the liver in nonalcoholic fatty liver disease. Int J Med Sci, 2016, 13 (3): 169-78. [6] Raffaele M, Bellner L, Singh SP, et al. Epoxyeicosatrienoic intervention improves NAFLD in leptin receptor deficient mice by an increase in PGC1α-HO-1-PGC1α-mitochondrial signaling. Exp Cell Res, 2019, 380 (2): 180-187. [7] Pittalà V, Salerno L, Romeo G, et al. Therapeutic potential of caffeic acid phenethyl ester (CAPE) in diabetes. Curr Med Chem, 2018, 25 (37): 4827-4836. [8] Mehta J, Rayalam S, Wang X. Cytoprotective effects of natural compounds against oxidative stress. Antioxidants (Basel), 2018, 7 (10): 147. [9] Kim SH, Park HS, Hong MJ, et al. Caffeic acid phenethyl ester improves metabolic syndrome by activating PPAR-γ and inducing adipose tissue remodeling in diet-induced obese mice. Mol Nutr Food Res, 2018, 62 (10): e1700701. [10] Salazar G. NADPH oxidases and mitochondria in vascular senescence. Int J Mol Sci, 2018, 19 (5): 1327. [11] Yang N, Dang SS, Shi JJ, et al. Caffeic acid phenethyl ester attenuates liver fibrosis via inhibition of TGF-beta1/Smad3 pathway and induction of autophagy pathway. Biochem Biophys Res Commun, 2017, 486 (1): 22-28. [12] Nie J, Chang Y, Li Y, et al. Caffeic acid phenethyl ester (propolis extract) ameliorates insulin resistance by inhibiting JNK and NF-κB inflammatory pathways in diabetic mice and HepG2 Cell models. J Agric Food Chem, 2017, 65(41): 9041-9053. [13] Fan L, Xiao QH, Zhang LW, et al. CAPE-pNO2 attenuates diabetic cardiomyopathy through the NOX4/NF-κB pathway in STZ-induced diabetic mice. Biomed Pharmacother, 2018, 108: 1640-1650. [14] Sorrenti V, Raffaele M, Vanella L, et al. Protective effects of caffeic acid phenethyl ester (CAPE) and novel cape analogue as inducers of heme oxygenase-1 in streptozotocin-induced type 1 diabetic rats. Int J Mol Sci, 2019, 20 (10): 2441. [15] Galmés-Pascual BM, Nadal-Casellas A, Bauza-Thorbrügge M, et al.17β-estradiol improves hepatic mitochondrial biogenesis and function through PGC1B. J Endocrinol, 2017, 232 (2): 297-308. [16] He W, Wang P, Chen Q, et al. Exercise enhances mitochondrial fission and mitophagy to improve myopathy following critical limb ischemia in elderly mice via the PGC1α/FNDC5/irisin pathway. Skelet Muscle, 2020, 10 (1): 25. [17] Qaisar R, Bhaskaran S, Van Remmen H. Muscle fiber type diversification during exercise and regeneration. Free Radic Biol Med, 2016, 98: 56-67. [18] Methenitis S. Abrief review on concurrent training: from laboratory to the field. Sports (Basel), 2018, 6 (4): 127. [19] Espinoza MB, Aedo JE, Zuloaga R, et al. Cortisol induces reactive oxygen species through a membrane glucocorticoid receptor in rainbow trout myotubes. J Cell Biochem, 2017, 118 (4): 718-725. [20] Guo A, Li K, Xiao Q. Fibroblast growth factor 19 alleviates palmitic acid-induced mitochondrial dysfunction and oxidative stress via the AMPK/PGC-1α pathway in skeletal muscle. Biochem Biophys Res Commun, 2020, 526 (4): 1069-1076. [21] Sheka AC, Adeyi O, Thompson J, et al. Nonalcoholicsteatohepatitis: A review. JAMA, 2020, 323 (12): 1175-1183. |