[1] Sun S C. Non-canonical NF-κB signaling pathway. Cell Res, 2011,21(1):71-85. [2] Sun S C. The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol, 2017,17(9):545-558. [3] Shin C, Ito Y, Ichikawa S, et al. MKRN2 is a novel ubiquitin E3 ligase for the p65 subunit of NF-κB and negatively regulates inflammatory responses. Sci Rep, 2017,7:46097. [4] Zhang T, Ma C, Zhang Z, et al. NF-κB signaling in inflammation and cancer. Med Comm (2020), 2021,2(4):618-653. [5] Levidou G, Saetta A A, Korkolopoulou P, et al. Clinical significance of nuclear factor (NF)-kappaB levels in urothelial carcinoma of the urinary bladder. Virchows Arch, 2008,452(3):295-304. [6] Guo F, Cheng X, Jing B, et al. FGD3 binds with HSF4 to suppress p65 expression and inhibit pancreatic cancer progression. Oncogene, 2022,41(6):838-851. [7] Al-Mutairi M S, Habashy H O. Nuclear factor-κb clinical significance in breast cancer: an immunohistochemical study. Med Princ Pract, 2023,32(1):33-39. [8] Xu X, Lei Y, Chen L, et al. Phosphorylation of NF-κB p65 drives inflammation-mediated hepatocellular carcinogenesis and is a novel therapeutic target. J Exp Clin Cancer Res, 2021,40(1):253. [9] Wang S, Kou B, Chai M, et al. Knockout of ASPP2 promotes DEN-induced hepatocarcinogenesis via the NF-kappaB pathway in mice. Cancer Gene Ther, 2022,29(2):202-214. [10] Hou Y, Moreau F, Chadee K. PPARγ is an E3 ligase that induces the degradation of NFκB/p65. Nat Commun, 2012,3:1300. [11] Bian X, Liu R, Meng Y, et al. Lipid metabolism and cancer. J Exp Med, 2021,218(1):12-16. [12] Corn K C, Windham M A, Rafat M. Lipids in the tumor microenvironment: from cancer progression to treatment. Prog Lipid Res, 2020,80:101055. [13] Chen M, Lu P, Ma Q, et al. CTNNB1/β-catenin dysfunction contributes to adiposity by regulating the cross-talk of mature adipocytes and preadipocytes. Sci Adv, 2020,6(2):eaax9605. [14] Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol, 2009,1(6):a001651. [15] Vallabhapurapu S, Karin M. Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol, 2009,27:693-733. [16] Moynagh P N. The NF-kappaB pathway. J Cell Sci, 2005,118(Pt 20):4589-4592. [17] Liu P, Rojo D L V M, Sammani S, et al. RPA1 binding to NRF2 switches ARE-dependent transcriptional activation to ARE-NRE-dependent repression. Proc Natl Acad Sci U S A, 2018,115(44):E10352-E10361. [18] Xu M, Tan J, Liu X, et al. Tripartite motif containing 26 prevents steatohepatitis progression by suppressing C/EBPδ signalling activation. Nat Commun, 2023,14(1):6384. [19] van der Sluis R, Erasmus E. Xenobiotic/medium chain fatty acid: CoA ligase - a critical review on its role in fatty acid metabolism and the detoxification of benzoic acid and aspirin. Expert Opin Drug Metab Toxicol, 2016,12(10):1169-1179. [20] Cao Y, Li J, Qiu S, et al. ACSM5 inhibits ligamentum flavum hypertrophy by regulating lipid accumulation mediated by FABP4/PPAR signaling pathway. Biol Direct, 2023,18(1):75. [21] Tsuruta H, Yamahara K, Yasuda-Yamahara M, et al. Emerging pathophysiological roles of ketone bodies. Physiology (Bethesda), 2024,39(3):10. [22] Shi L, Zhao D, Hou C, et al. Early interleukin-6 enhances hepatic ketogenesis in APP(SWE)/PSEN1dE9 mice via 3-hydroxy-3-methylglutary-CoA synthase 2 signaling activation by p38/nuclear factor κB p65. Neurobiol Aging, 2017,56:115-126. [23] Asif S, Kim R Y, Fatica T, et al. Hmgcs2-mediated ketogenesis modulates high-fat diet-induced hepatosteatosis. Mol Metab, 2022,61:101494. |