实用肝脏病杂志 ›› 2024, Vol. 27 ›› Issue (6): 957-960.doi: 10.3969/j.issn.1672-5069.2024.06.040
• 综述 • 上一篇
李晓斌, 刘博文 综述, 胡世平 审校
收稿日期:
2023-11-13
出版日期:
2024-11-10
发布日期:
2024-11-07
通讯作者:
胡世平,E-mail:2078200488@qq.com
作者简介:
李晓斌,女,27岁,博士研究生。主要从事肝病的基础与临床研究。E-mail:xiaobinxiaobin1@163.com
基金资助:
Li Xiaobin, Liu Bowen, Hu shiping
Received:
2023-11-13
Online:
2024-11-10
Published:
2024-11-07
摘要: 肝细胞癌(HCC)具有复杂的生物学特性、高度的异质性和免疫抑制肿瘤微环境,预后差。代谢重编程(MR)是肿瘤细胞最重要的特征之一,脂质MR已成为HCC生长和转移的重要机制。本文综述了常见的脂质及其代谢相关分子与HCC发生、发展的关系,以期为HCC的治疗提供新的分子靶点。
李晓斌, 刘博文, 胡世平. 脂质代谢重编程与肝细胞癌发生发展研究进展*[J]. 实用肝脏病杂志, 2024, 27(6): 957-960.
Li Xiaobin, Liu Bowen, Hu shiping. Lipid metabolic reprogramming in the carcinogenesis of patients with hepatocellular carcinoma[J]. Journal of Practical Hepatology, 2024, 27(6): 957-960.
[1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J Clin,2021,71(3): 209-249. [2] Kulik L, Elserag HB. Epidemiology and management of hepatocellular carcinoma. Gastroenterology,2019,156(2): 477-491. [3] Calle EE, Rodriguez C, Walker TK, et al. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med,2003, 348(17): 1625-1638. [4] Pekow JR, Bhan AK, Zheng H, et al. Hepatic steatosis is associated with increased frequency of hepatocellular carcinoma in patients with hepatitis C-related cirrhosis. Cancer,2007,109(12): 2490-2496. [5] Xu X, Peng Q, Jiang X, et al. Metabolic reprogramming and epigenetic modifications in cancer: from the impacts and mechanisms to the treatment potential. Exp Mol Med,2023,55(7): 1357-1370. [6] Cheng C, Geng F, Cheng X, et al. Lipid metabolism reprogramming and its potential targets in cancer. Cancer Commun,2018,38(1): 27. [7] Kuerschner L, Moessinger C, Thiele C. Imaging of lipid biosynthesis: how a neutral lipid enters lipid droplets. Traffic,2008,9(3): 338-352. [8] Sun D, Zhao T, Long K, et al. Triclosan down-regulates fatty acid synthase through microRNAs in HepG2 cells. Eur J Pharmacol,2021,907: 174261. [9] Chen SZ, Ling Y, Yu LX, et al. 4-phenylbutyric acid promotes hepatocellular carcinoma via initiating cancer stem cells through activation of PPAR-a. Clin Transl Med,2021,11(4): e379. [10] Baek AE, Yu YA, He S, et al. The cholesterol metabolite 27 hydroxycholesterol facilitates breast cancer metastasis through its actions on immune cells. Nat Commun,2017,8(1): 864. [11] Ward PS, Thompson CB. Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell,2012,21: 297-308. [12] Feng XC, Liu FC, Chen WY, et al. Lipid metabolism of hepatocellular carcinoma impacts targeted therapy and immunotherapy. World J Gastrointest Oncol,2023,15(4): 617-631. [13] Ribatti D, Belloni AS, Nico B,et al. Leptin-leptin receptor are involved in angiogenesis in human hepatocellular carcinoma. Peptides,2008,29(9):1596-1602. [14] Sharma D, Wang J, Fu PP, et al. Adiponectin antagonizes the oncogenic actions of leptin in hepatocellular carcinogenesis. Hepatology,2010,52(5): 1713-1722. [15] Röhrig F, Schulze A. The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer,2016,16(11): 732-749. [16] Currie E, Schulze A, Zechner R, et al. Cellular fatty acid metabolism and cancer. Cell Metab,2013,18(2): 153-161. [17] Wang M, Han J, Xing H, et al. Dysregulated fatty acid metabolism in hepatocellular carcinoma. Hepat Oncol,2016,3: 241-251. [18] Verschueren KHG, Blanchet C, Felix J, et al. Structure of ATP citrate lyase and the origin of citrate synthase in the Krebs cycle. Nature,2019,568(7753): 571-575. [19] Hu C, Xin Z, Sun X, et al. Activation of ACLY by SEC63 deploys metabolic reprogramming to facilitate hepatocellular carcinoma metastasis upon endoplasmic reticulum stress. J Exp Clin Cancer Res,2023,42(1): 108. [20] Wakil SJ, Abuelheiga LA. Fatty acid metabolism: target for metabolic syndrome. J Lipid Res,2009,50: S138-S143. [21] Wang MD, Wu H, Fu GB, et al. Acetyl-coenzyme A carboxylase alpha promotion of glucose-mediated fatty acid synthesis enhances survival of hepatocellular carcinoma in mice and patients. Hepatology,2016,63(4): 1272-1286. [22] Flavin R, Peluso S, Nguyen PL, et al. Fatty acid synthase as a potential therapeutic target in cancer. Future Oncol,2010,6(4): 551-562. [23] Li Y, Yang W, Zheng Y,et al. Targeting fatty acid synthase modulates sensitivity of hepatocellular carcinoma to sorafenib via ferroptosis. J Exp Clin Cancer Res,2023,42(1): 6. [24] Cao D, Song X, Che L, et al. Both de novo synthetized and exogenous fatty acids support the growth of hepatocellular carcinoma cells. Liver Int,2017,37(1): 80-89. [25] Hulver MW, Berggren JR, Carper MJ, et al. Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle contributes to abnormal fatty acid partitioning in obese humans. Cell Metab,2005,2(4): 251-261. [26] Liu HH, Xu Y, Li CJ, et al. An SCD1-dependent mechanoresponsive pathway promotes HCC invasion and metastasis through lipid metabolic reprogramming. Mol Ther,2022,30(7): 2554-2567. [27] Goldberg IJ, Eckel RH, Abumrad NA. Regulation of fatty acid uptake into tissues: lipoprotein lipase-and CD36-mediated pathways. J Lipid Res, 2009,50: S86-S90. [28] Bergers G, Fendt SM. The metabolism of cancer cells during metastasis. Nat Rev Cancer,2021,21(3): 162-180. [29] Tao L, Ding X, Yan L, et al. CD36 accelerates the progression of hepatocellular carcinoma by promoting FAs absorption. Med Oncol,2022,39(12): 202. [30] Luo X, Zheng E, Wei L, et al. The fatty acid receptor CD36 promotes HCC progression through activating Src/PI3K/AKT axis-dependent aerobic glycolysis. Cell Death Dis,2021,12(4): 328. [31] Hong J, Liu J, Zhang Y, et al. MiR-3180 inhibits hepatocellular carcinoma growth and metastasis by targeting lipid synthesis and uptake. Cancer Cell Int, 2023,23(1): 66. [32] Doege H, Baillie RA, Ortegon AM,et al. Targeted deletion of FATP5 reveals multiple functions in liver metabolism: alterations in hepatic lipid homeostasis. Gastroenterology,2006,130: 1245-1258. [33] Maxfield FR, Tabas I. Role of cholesterol and lipid organization in disease. Nature,2005,438: 612-621. [34] Neuschwander‐tetri BA. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of no triglyceride fatty acid metabolites. Hepatology,2010,52: 774-788. [35] Hu J, Liu N, Song D,et al. A positive feedback between cholesterol synthesis and the pentose phosphate pathway rather than glycolysis promotes hepatocellular carcinoma. Oncogene,2023,42(39): 2892-2904. [36] Tang W, Zhou J, Yang W, et al. Aberrant cholesterol metabolic signaling impairs antitumor immunosurveillance through natural killer T cell dysfunction in obese liver. Cell Mol Immunol,2022,19(7): 834-847. [37] Li Z, Wang Y, Xing R, et al. Cholesterol efflux drives the generation of immunosuppressive macrophages to promote the progression of human hepatocellular carcinoma. Cancer Immunol Res,2023,11(10): 1400-1413. [38] Yuan J, Lyu T, Yang J, et al. The lipid transporter HDLBP promotes hepatocellular carcinoma metastasis through BRAF-dependent epithelial-mesenchymal transition. Cancer Lett,2022,28(549): 215921. [39] Che L, Chi W, Qiao Y, et al. Cholesterol biosynthesis supports the growth of hepatocarcinoma lesions depleted of fatty acid synthase in mice and humans. Gut,2020,69(1): 177-186. [40] Zhang F, Gao J, Liu X, et al. LATS-regulated nuclear-cytoplasmic translocation of SREBP2 inhibits hepatocellular carcinoma cell migration and invasion via epithelial-mesenchymal transition. Mol Carcinog,2023,62(7):963-974. [41] Shao WQ, Zhu WW, Luo MJ, et al. Cholesterol suppresses GOLM1-dependent selective autophagy of RTKs in hepatocellular carcinoma. Cell Rep,2022,39(3): 110712. [42] Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol,2008,9: 139-150. [43] Dressler KA, Mathias S, Kolesnick RN. Tumor necrosis factor-α activates the sphingomyelin signal transduction pathway in a cell-free system. Science,1992,255: 1715-1718. [44] Zhang X, Zhuge J, Liu J, et al. Prognostic signatures of sphingolipids: Understanding the immune landscape and predictive role in immunotherapy response and outcomes of hepatocellular carcinoma. Front Immunol,2023,14: 1153423. [45] Sasset L, Di LA. Sphingolipid metabolism and signaling in endothelial cell functions. Adv Exp Med Biol,2022,1372: 87-117. [46] Wang X, Qiu Z, Dong W, et al. S1PR1 induces metabolic reprogramming of ceramide in vascular endothelial cells, affecting hepatocellular carcinoma angiogenesis and progression. Cell Death Dis,2022,13(9): 768. [47] Tagaram HR, Divittore NA, Barth BM, et al. Nanoliposomal ceramide prevents in vivo growth of hepatocellular carcinoma. Gut,2011,60(5): 695-701. [48] Li G, Liu D, Kimchi ET, et al. Nanoliposome C6-ceramide increases the anti-tumor immune response and slows growth of liver tumors in mice. Gastroenterology,2018,154(4): 1024-1036. [49] Miura K, Nagahashi M, Prasoon P,et al. Dysregulation of sphingolipid metabolic enzymes leads to high levels of sphingosine-1-phosphate and ceramide in human hepatocellular carcinoma. Hepatol Res,2021,51(5): 614-626. [50] Cheng JC, Wang EY, Yi Y, et al. S1P stimulates proliferation by upregulating CTGF expression through S1PR2-mediated YAP activation. Mol Cancer Res,2018,16(10): 1543-1555. [51] Li M, Tang Y, Wang D, et al. Sphingosine-1-phosphate transporter spinster homolog 2 is essential for iron-regulated metastasis of hepatocellular carcinoma. Mol Ther,2022,30(2): 703-713. [52] Liu H, Ma Y, He HW, et al. SPHK1 (sphingosine kinase 1) induces epithelial-mesenchymal transition by promoting the autophagy-linked lysosomal degradation of CDH1/E-cadherin in hepatoma cells. Autophagy,2017,13(5): 900-913. [53] Tallima H, Azzazy HME, El RR. Cell surface sphingomyelin: key role in cancer initiation, progression, and immune evasion. Lipids Health Dis,2021,20(1): 150. [54] Li Z, Guan M, Lin Y, et al. Aberrant lipid metabolism in hepatocellular carcinoma revealed by liver lipidomics. Int J Mol Sci,2017,18(12): 2550. [55] Lin M, Liao W, Dong M, et al. Exosomal neutral sphingomyelinase 1 suppresses hepatocellular carcinoma via decreasing the ratio of sphingomyelin/ceramide. FEBS J,2018,285(20): 3835-3848. [56] D’angelo G, Moorthi S, Luberto C. Role and function of sphingomyelin biosynthesis in the development of cancer. Adv Cancer Res,2018,140: 61-96. [57] Lu H, Zhou L, Zuo H, et al. Overriding sorafenib resistance via blocking lipid metabolism and Ras by sphingomyelin synthase 1 inhibition in hepatocellular carcinoma. Cancer Chemother Pharmacol,2021,87(2): 217-228. [58] Schnaar RL. Glycosphingolipids in cell surface recognition. Glycobiology,1991,1: 477-485. [59] Schömel N, Geisslinger G, Wegner MS. Influence of glycosphingolipids on cancer cell energy metabolism. Prog Lipid Res,2020,79: 101050. [60] Jennemann R, Federico G, Mathow D, et al. Inhibition of hepatocellular carcinoma growth by blockade of glycosphingolipid synthesis. Oncotarget,2017,8(65): 109201-109216. [61] Su T, Qin XY, Dohmae N,et al. Inhibition of ganglioside synthesis suppressed liver cancer cell proliferation through targeting kinetochore metaphase signaling. Metabolites,2021,11(3): 167. [62] Zhu J, Wang Y, Yu Y, et al. Aberrant fucosylation of glycosphingolipids in human hepatocellular carcinoma tissues. Liver Int,2014,34(1): 147-160. [63] Zhong WX, Honke K, Long ZY, et al. Lactosylsulfatide expression in hepatocellular carcinoma cells enhances cell adhesion to vitronectin and intrahepatic metastasis in nude mice. Int J Cancer,2004,110(4): 504-510. [64] Makide K, Kitamura H, Sato Y, et al. Emerging lysophospholipid mediators, lysophosphatidylserine, lysophosphatidylthreonine, lysophosphatidylethanolamine and lysophosphatidylglycerol. Prostaglandins Other Lipid Mediat,2009,89(3-4): 135-139. [65] Grzelczyk A, Gendaszewska-darmach E. Novel bioactive glycerol-based lysophospholipids: new data --new insight into their function. Biochimie,2013,95(4): 667-679. [66] Ouben AJ, Moolenaar WH. Autotaxin and LPA receptor signaling in cancer. Cancer Metastasis Rev,2011,30(3-4): 557-565. [67] Guri Y, Colombi M, Dazert E, et al. mTORC2 promotes tumorigenesis via lipid synthesis. Cancer Cell,2017,32(6): 807-823. [68] Zhong H, Xiao M, Zarkovic K, et al. Mitochondrial control of apoptosis through modulation of cardiolipin oxidation in hepatocellular carcinoma: A novel link between oxidative stress and cancer. Free Radic Biol Med,2017,102: 67-76. [69] Guan Y, Chen X, Wu M, et al. The phosphatidylethanolamine biosynthesis pathway provides a new target for cancer chemotherapy. J Hepatol,2020,72(4): 746-760. [70] Cheng X, Li L, Thorpe PE, et al. Antibody-mediated blockade of phosphatidylserine enhances the antitumor effect of sorafenib in hepatocellular carcinomas xenografts. Ann Surg Oncol,2016,23: 583-591. [71] Mokdad AA, Zhu H, Beg MS, et al. Efficacy and safety of bavituximab in combination with sorafenib in advanced hepatocellular carcinoma: A single-arm, open-label, phase II clinical trial. Target Oncol,2019,14(5): 541-550. |
[1] | 丹巴玉珍, 程盼. 增强MRI检查诊断HCC价值研究*[J]. 实用肝脏病杂志, 2024, 27(6): 911-914. |
[2] | 马紫瑶, 王超, 赵珏, 冯赟, 张铭, 梁凯轶. MRI诊断不典型肝脓肿临床应用价值分析*[J]. 实用肝脏病杂志, 2024, 27(6): 931-934. |
[3] | 张伟萍, 戈宏焱. 细胞焦亡及其在肝细胞癌发病过程中的作用研究进展[J]. 实用肝脏病杂志, 2024, 27(5): 797-800. |
[4] | 贾素兰, 卢昊宁, 杜静波. 肝脏小血管瘤患者MRI动态增强和弥散成像表现特征*[J]. 实用肝脏病杂志, 2024, 27(1): 113-116. |
[5] | 高金龙, 王海峰, 李娜, 梁朝晖, 张文正. 自MR-T2图像勾画肝细胞癌患者放疗靶区精度研究[J]. 实用肝脏病杂志, 2021, 24(4): 565-568. |
[6] | 刘瑞清(综述), 袁小澎(审校). 缺氧诱导因子-1α参与肝纤维化形成机制研究进展[J]. 实用肝脏病杂志, 2021, 24(1): 145-148. |
[7] | 孟海生, 胡冬梅, 王海涛, 顾金凤, 赵静, 梁啸寒. 应用超声单模态融合成像技术指导微波消融治疗原发性肝癌即时疗效评价的价值研究*[J]. 实用肝脏病杂志, 2020, 23(4): 572-575. |
[8] | 沈金勇,郭翔云,周辉,罗乐. Hp根治治疗对非酒精性脂肪性肝病患者血清细胞因子和血脂水平的影响[J]. 实用肝脏病杂志, 2020, 23(3): 364-367. |
[9] | 方菊梅,张万里,陈怡发,刘黎明,黄庆勇. 非酒精性脂肪性肝炎患者血清sCD163和IL-1βmRNA水平变化及其临床意义探讨[J]. 实用肝脏病杂志, 2020, 23(3): 368-371. |
[10] | 张猛, 陈晹, 刘娇, 李叶晟, 黄杨卿. 非酒精性脂肪性肝病小鼠肝组织与脂质代谢相关基因FAS、ACC和SREBP-1水平分析*[J]. 实用肝脏病杂志, 2020, 23(2): 163-166. |
[11] | 肖科, 潘志华, 涂波, 陈丽. 术前CT/MRI检查指标对肝硬化脾切除术后门静脉血栓形成的预测价值[J]. 实用肝脏病杂志, 2019, 22(3): 417-420. |
[12] | 佟辉, 李涛, 申川, 彭承宏, 邱伟华, 沈柏用, 祝哲诚. let-7a调控自噬对缺氧状态下原发性肝癌HCCLM3细胞增殖的影响*[J]. 实用肝脏病杂志, 2018, 21(5): 701-704. |
[13] | 刘欣, 张莹, 张文耀, 汪秀玲. 多排螺旋CT与MRI增强扫描原发性肝癌病灶影像学表现和诊断效能分析*[J]. 实用肝脏病杂志, 2018, 21(4): 513-516. |
[14] | 丁雯瑾, 孙超, 桑玉尔, 陈梅梅, 范建高, 袁涛. 环境新兴污染物双酚A暴露加重非酒精性脂肪性肝病大鼠脂质代谢异常*[J]. 实用肝脏病杂志, 2017, 20(6): 785-787. |
[15] | 范晓棠, 闫亚宁, 石绣江, 冯娟, 马海林, 何方平. 慢性乙型肝炎与非酒精性脂肪性肝病患者内皮功能检测*[J]. 实用肝脏病杂志, 2016, 19(5): 536-539. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||