[1] Nassal M. HBV cccDNA: viral persistence reservoir and key obstacle for a cure of chronic hepatitis B.Gut,2015,64(12):1972-1984. [2] Xia Y, Guo H. Hepatitis B virus cccDNA: formation, regulation and therapeutic potential.Antiviral Res,2020,180:104824. [3] Lee HW, Lee JS, Ahn SH. Hepatitis B virus cure: targets and future therapies.Int J Mol Sci,2020,22(1):213. [4] Wang J, Huang H, Liu Y, et al. HBV genome and life cycle.Adv Exp Med Biol,2020,1179:17-37. [5] Bruss V, Hagelstein J, Gerhardt E, et al. Myristylation of the largesurface protein is required for hepatitis B virusin vitro infectivity.Virology,1996,218(2):396-399. [6] König A, Döring B, Mohr C, et al. Kinetics of the bile acid transporter and hepatitis B virus receptor Na+/taurocholate cotransporting polypeptide (NTCP) in hepatocytes.J Hepatol,61(4):867-875. [7] Bogomolov P, Alexandrov A, Voronkova N, et al. Treatment of chronic hepatitis D with the entry inhibitor myrcludex B: First results of a phase Ib/IIa study.J Hepatol,2016,65(3):490-498. [8] Blank A, Eidam A, Haag M, et al. The NTCP-inhibitor myrcludex b: effects on bile acid disposition and tenofovir pharmacokinetics.Clin Pharmacol Ther,2018,103(2):341-348. [9] Shimura S, Watashi K, Fukano K, et al. Cyclosporin derivatives inhibit hepatitis B virus entry without interfering with NTCP transporter activity.J Hepatol,2017,66(4):685-692. [10] Fukano K, Oshima M, Tsukuda S, et al. NTCP oligomerization occurs downstream of the NTCP-EGFR interaction during hepatitis B virus internalization.J Virol,2021,95(24):e00938-21. [11] Hu Q, Zhang F, Duan L, et al. E-cadherin plays a role in hepatitis B virus entry through affecting glycosylated sodium-taurocholate cotransporting polypeptide distribution.Front Cell Infect Microbio,2020,10:74. [12] Appelman M D, Chakraborty A, Protzer U, et al. N-glycosylation of theNa+-taurocholate cotransporting polypeptide (NTCP) determines its trafficking and stability and is required for hepatitis B virus infection.PLoS One,2017,12(1):e0170419. [13] Mueller H, Lopez A, Tropberger P, et al. PAPD5/7 are host factors that are required for hepatitis B virus RNA stabilization.Hepatology,2019,69(4):1398-1411. [14] Sun L, Zhang F, Guo F, et al. The dihydroquinolizinone compound RG7834 inhibits the polyadenylase function of PAPD5 and PAPD7 and accelerates the degradation of matured hepatitis B virus surface protein mRNA.Antimicrob Agents Chemother,2020,65(1):e00640-20. [15] Block TM, Young JAT, Javanbakht H, et al. Host RNA quality control as a hepatitis B antiviral target.Antiviral Res,2021,186:104972. [16] Han X, Zhou C, Jiang M, et al. Discovery of RG7834: the first-in-class selective and orally available small molecule hepatitis B virus expression inhibitor with novel mechanism of action.J Med Chem,2018,61(23):10619-10634. [17] Hwang N, Sun L, Noe D, et al. Hepatoselective dihydroquinolizinone bis-acids for HBsAg mRNA degradation.ACS Med Chem Lett,2021,12(7):1130-1136. [18] Liu F, Lee ACH, Guo F, et al. Host poly(A) polymerases PAPD5 and PAPD7 provide two layers of protection that ensure the integrity and stability of hepatitis B virus RNA.J Virol,2021,95(18):e00574-21. [19] Königer C, Wingert I, Marsmann M, et al. Involvement of the host DNA-repair enzyme TDP2 in formation of the covalently closed circular DNA persistence reservoir of hepatitis B viruses.Proc Natl Acad Sci U S A,2014,111(40):E4244-E4253. [20] Tang L, Sheraz M, Mcgrane M, et al. DNA polymerase alpha is essential for intracellular amplification of hepatitis B virus covalently closed circular DNA.PLoS Pathog,2019,15(4):e1007742. [21] Qi Y, Gao Z, Xu G, et al. DNA polymerase κ is a key cellular factor for the formation of covalently closed circular DNA of hepatitis B virus.PLoS Pathog,2016,12(10):e1005893. [22] Long Q, Yan R, Hu J, et al. The role of host DNA ligases in hepadnavirus covalently closed circular DNA formation.PLoS Pathog,2017,13(12):e1006784. [23] Kitamura K, Que L, Shimadu M, et al. Flap endonuclease 1 is involved in cccDNA formation in the hepatitis B virus.PLoS Pathog,2018,14(6):e1007124. [24] Yang H, Zhu XQ, Wang W, et al. The synthesis of furoquinolinedione and isoxazoloquinolinedione derivatives as selectivetyrosyl-DNA phosphodiesterase 2 (TDP2) inhibitors.Bioorg Chem,2021,111:104881. [25] Luo J, Luckenbaugh L, Hu H, et al. Involvement of host ATR-CHK1 pathway in hepatitis B virus covalently closed circular DNA formation.MBio,2020,11(1):e03423-419. [26] Mohd-Ismail N K, Lim Z, Gunaratne J, et al. Mapping the interactions of HBV cccDNA with host factors.Int J Mol Sci,2019,20(17):4276. [27] Decorsière A, Mueller H, Van Breugel P C, et al. Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor.Nature,2016,531(7594):386-389. [28] Allweiss L, Giersch K, Pirosu A, et al. Therapeutic shutdown of HBV transcripts promotes reappearance of the SMC5/6 complex and silencing of the viral genome in vivo.Gut,2022,71(2):372-381. [29] Sekiba K, Otsuka M, Ohno M, et al. Pevonedistat, a neuronal precursor cell-expressed developmentally down-regulated protein 8–activating enzyme inhibitor, is a potent inhibitor of hepatitis B virus.Hepatology,2019,69(5):1903-1915. [30] Suslov A, Boldanova T, Wang X, et al. Hepatitis B virus does not interfere with innate immune responses in the human liver.Gastroenterology,2018,154(6):1778-1790. [31] Chan Y K, Gack M U. Viral evasion of intracellular DNA and RNA sensing.Nat Rev Microbiol,2016,14(6):360-373. [32] Lanford R E, Guerra B, Chavez D, et al. GS-9620, an oral agonist of Toll-like receptor-7, induces prolonged suppression of hepatitis B virus in chronically infected chimpanzees.Gastroenterology,2013,144(7):1508-1517. [33] Menne S, Tumas DB, Liu KH, et al. Sustained efficacy and seroconversion with the Toll-like receptor 7 agonist GS-9620 in the Woodchuck model of chronic hepatitis B.J Hepatol,2015,62(6):1237-1245. [34] Tsai TY, Huang MT, Sung PS, et al. SIGLEC-3 (CD33) serves as an immune checkpoint receptor for HBV infection.J Clin Invest,2021,131(11):e141965. [35] Janssen HLA, Brunetto MR, Kim YJ, et al. Safety, efficacy and pharmacodynamics of vesatolimod (GS-9620) in virally suppressed patients with chronic hepatitis B.J Hepatol,2018,68(3):431-440. [36] Herschke F, Li C, Zhu R, et al. JNJ-64794964 (AL-034/TQ-A3334), a TLR7 agonist, induces sustained anti-HBV activity in AAV/HBV mice via non-cytolytic mechanisms.Antiviral Res,2021:105196. [37] Daffis S, Balsitis S, Chamberlain J, et al. Toll‐like receptor 8 agonist GS‐9688 induces sustained efficacy in the woodchuck model of chronic hepatitis B.Hepatology,2021,73(1):53-67. [38] Amin OE, Colbeck EJ, Daffis S, et al. Therapeutic potential of TLR8 agonist GS‐9688 (selgantolimod) in chronic hepatitis B: remodeling of antiviral and regulatory mediators.Hepatology,2021,74(1):55-71. [39] Mackman RL, Mish M, Chin G, et al. Discovery of GS-9688 (selgantolimod) as a potent and selective oral toll-like receptor 8 agonist for the treatment of chronic hepatitis B.J Med Chem,2020,63(18):10188-10203. [40] Embrechts W, Herschke F, Pauwels F, et al. 2, 4-Diaminoquinazolines as dual toll-like receptor (TLR) 7/8 modulators for the treatment of hepatitis B virus.J Med Chem,2018,61(14):6236-6246. [41] Ouaguia L, Dufeu‐Duchesne T, Leroy V, et al. Hepatitis B virus exploits C‐type lectin receptors to hijack cDC1s, cDC2s and pDCs.Clin Transl Immunol,2020,9(12):e1208. [42] Sato S, Li K, Kameyama T, et al. The RNA sensor RIG-I dually functions as an innate sensor and direct antiviral factor for hepatitis B virus.Immunity,2015,42(1):123-132. [43] Korolowicz KE, Iyer RP, Czerwinski S, et al. Antiviral efficacy and host innate immunity associated with SB 9200 treatment in the woodchuck model of chronic hepatitis B.PLoS One,2016,11(8):e0161313. [44] Gane E, Verdon DJ, Brooks AE, et al. Anti-PD-1 blockade with nivolumab with and without therapeutic vaccination for virally suppressed chronic hepatitis B: a pilot study.J Hepatol,2019,71(5):900-907. [45] Ma H, Lim TH, Leerapun A, et al. Therapeutic vaccine BRII-179 restores HBV-specific immune responses in patients with chronic HBV in a phase Ib/IIa study.JHEP Rep,2021,3(6):100361. [46] Wang W, Zhou X, Bian Y, et al. Dual-targeting nanoparticle vaccine elicits a therapeutic antibody response against chronic hepatitis B.Nat Nanotechnol,2020,15(5):406-416. [47] Ma A, Motyka B, Gutfreund K, et al. A dendritic cell receptor-targeted chimeric immunotherapeutic protein (C-HBV) for the treatment of chronic hepatitis B.Hum Vaccin Immunother,2020,16(4):756-778. [48] Spyrou E, Smith CI, Ghany MG. Hepatitis B: Current status of therapy and future therapies.Gastroenterol Clin North Am,2020,49(2):215-238. [49] Bertoletti A, Tan AT. HBV as a target for CAR or TCR-T cell therapy.Curr Opin Immunol,2020,66:35-41. [50] Zhang H, Wang F, Zhu X, et al. Antiviralactivity and pharmacokinetics of the hepatitis B virus (HBV) capsid assembly modulator GLS4 in patients with chronic HBV infection.Clin Infect Dis,2021,73(2):175-182. |