[1] Pang Y, An J, Shu W, etal. Epidemiology of extrapulmonary tuberculosis among inpatients, China, 2008-2017. Emerg Infect Dis, 2019, 25(3):457-464. [2] 崔怡然, 宇传华. 基于全球视角下的中国结核病负担现状与趋势分析. 中华疾病控制杂志, 2020, 24(3): 258-283. [3] 何昱颖, 胡屹, 陈玮, 等. 2014年至2018年贵州省利福平耐药结核病的危险因素及治疗转归分析. 中华传染病杂志, 2021, 39(5): 289-294. [4] Taye H, Alemu K, Mihret A, et al. Global prevalence of mycobacterium bovis infections among human tuberculosis cases: systematic review and meta-analysis. Zoonoses Public Health, 2021, 68(7): 704-718. [5] Khan AF, Sajjad A, Mian DA, et al. Co-infection with hepatitis B in tuberculosis patients on anti-tuberculosis treatment and the final outcome. Cureus, 2021, 13(4):e14433. [6] 张洋婷, 卢学昭, 李晓娜, 等. 肺结核合并糖尿病患者药物性肝损伤影响因素分析. 中国防痨杂志, 2022, 44(1): 64-70. [7] 中华医学会结核病学分会. 中国耐多药和利福平耐药结核病治疗专家共识(2019年版). 中华结核和呼吸杂志, 2019, 42(10): 733-749. [8] Gał zka M, Didkowska A, Anusz K, et al. A review of tuberculosis and parasitic disease co-infection in ungulates, with regard to the potential threat to European bison (bison bonasus). Pol J Vet Sci, 2023, 26(1): 155-161. [9] Cöllü AY, Ucarman N, Bayhan GI. Complicated clinical course of zoonotic tuberculosis due to mycobacterium Caprae:a case report and literature review. Int J Mycobacteriol, 2022, 11(4): 466-468. [10] Cao J, Mi Y, Shi C, et al. First-line anti-tuberculosis drugs induce hepatotoxicity: A novel mechanism based on a urinary metabolomics platform. Biochem Biophys Res Commun, 2018, 497(2):485-491. [11] Liu L, Li X, Huang C, et al. Bile acids, lipid and purine metabolism involved in hepatotoxicity of first-line anti-tuberculosis drugs. Expert Opin Drug Metab Toxicol, 2020, 16(6):527-537. [12] Liu W, Lu L, Pan H, et al. Heme oxygenase-1 and hemopexin gene polymorphisms and the risk of anti-tuberculosis drug-induced hepatotoxicity in China. Pharmacogenomics, 2022, 23(7):431-441. [13] Ali N, Gupta N, Saravu K. Malnutrition as an important risk factor for drug-induced liver injury in patients on anti-tubercular therapy: an experience from a tertiary care center in South India. Drug Discov Ther, 2020, 14(3):135-138. [14] Moosa MS, Maartens G, Gunter H, et al. A randomized controlled trial of intravenous N-acetylcysteine in the management of anti-tuberculosis drug-induced liver injury. Clin Infect Dis, 2021, 73(9):e3377-e3383. [15] Chen R, Wang J, Zhang Y, et al. Key factors of susceptibility to anti-tuberculosisdrug-induced hepatotoxicity. Arch Toxicol, 2015, 89(6):883-897. [16] Chang TE, Huang YS, Chang CH, et al. The susceptibility of anti-tuberculosisdrug-induced liver injury and chronic hepatitis C infection: A systematic review and meta-analysis. J Chin Med Assoc, 2018, 81(2):111-118. [17] Liu X, Ren S, Zhang J, et al. The association between cytochrome P450 polymorphisms and anti-tuberculosis drug-induced liver injury: a systematic review and meta-analysis. Ann Palliat Med, 2021, 10(6):6518-6534. [18] Ambade A, Lowe P, Kodys K, et al. Pharmacological inhibition of CCR2/5 signaling prevents and reverses alcohol-induced liver damage, steatosis, and inflammation in mice. Hepatology, 2019, 69(3):1105-1121. [19] Haller C. Hypoalbuminemia in renal failure: pathogenesis and therapeutic considerations. Kidney Blood Press Res, 2005, 28(5-6):307-310. [20] Otaki Y, Watanabe T, Takahashi H, et al. Comorbid renal tubular damage and hypoalbuminemia exacerbate cardiac prognosis in patients with chronic heart failure. Clin Res Cardiol, 2016, 105(2):162-171. |