Journal of Practical Hepatology ›› 2024, Vol. 27 ›› Issue (6): 957-960.doi: 10.3969/j.issn.1672-5069.2024.06.040
Li Xiaobin, Liu Bowen, Hu shiping
Received:
2023-11-13
Online:
2024-11-10
Published:
2024-11-07
Li Xiaobin, Liu Bowen, Hu shiping. Lipid metabolic reprogramming in the carcinogenesis of patients with hepatocellular carcinoma[J]. Journal of Practical Hepatology, 2024, 27(6): 957-960.
[1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J Clin,2021,71(3): 209-249. [2] Kulik L, Elserag HB. Epidemiology and management of hepatocellular carcinoma. Gastroenterology,2019,156(2): 477-491. [3] Calle EE, Rodriguez C, Walker TK, et al. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med,2003, 348(17): 1625-1638. [4] Pekow JR, Bhan AK, Zheng H, et al. Hepatic steatosis is associated with increased frequency of hepatocellular carcinoma in patients with hepatitis C-related cirrhosis. Cancer,2007,109(12): 2490-2496. [5] Xu X, Peng Q, Jiang X, et al. Metabolic reprogramming and epigenetic modifications in cancer: from the impacts and mechanisms to the treatment potential. Exp Mol Med,2023,55(7): 1357-1370. [6] Cheng C, Geng F, Cheng X, et al. Lipid metabolism reprogramming and its potential targets in cancer. Cancer Commun,2018,38(1): 27. [7] Kuerschner L, Moessinger C, Thiele C. Imaging of lipid biosynthesis: how a neutral lipid enters lipid droplets. Traffic,2008,9(3): 338-352. [8] Sun D, Zhao T, Long K, et al. Triclosan down-regulates fatty acid synthase through microRNAs in HepG2 cells. Eur J Pharmacol,2021,907: 174261. [9] Chen SZ, Ling Y, Yu LX, et al. 4-phenylbutyric acid promotes hepatocellular carcinoma via initiating cancer stem cells through activation of PPAR-a. Clin Transl Med,2021,11(4): e379. [10] Baek AE, Yu YA, He S, et al. The cholesterol metabolite 27 hydroxycholesterol facilitates breast cancer metastasis through its actions on immune cells. Nat Commun,2017,8(1): 864. [11] Ward PS, Thompson CB. Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell,2012,21: 297-308. [12] Feng XC, Liu FC, Chen WY, et al. Lipid metabolism of hepatocellular carcinoma impacts targeted therapy and immunotherapy. World J Gastrointest Oncol,2023,15(4): 617-631. [13] Ribatti D, Belloni AS, Nico B,et al. Leptin-leptin receptor are involved in angiogenesis in human hepatocellular carcinoma. Peptides,2008,29(9):1596-1602. [14] Sharma D, Wang J, Fu PP, et al. Adiponectin antagonizes the oncogenic actions of leptin in hepatocellular carcinogenesis. Hepatology,2010,52(5): 1713-1722. [15] Röhrig F, Schulze A. The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer,2016,16(11): 732-749. [16] Currie E, Schulze A, Zechner R, et al. Cellular fatty acid metabolism and cancer. Cell Metab,2013,18(2): 153-161. [17] Wang M, Han J, Xing H, et al. Dysregulated fatty acid metabolism in hepatocellular carcinoma. Hepat Oncol,2016,3: 241-251. [18] Verschueren KHG, Blanchet C, Felix J, et al. Structure of ATP citrate lyase and the origin of citrate synthase in the Krebs cycle. Nature,2019,568(7753): 571-575. [19] Hu C, Xin Z, Sun X, et al. Activation of ACLY by SEC63 deploys metabolic reprogramming to facilitate hepatocellular carcinoma metastasis upon endoplasmic reticulum stress. J Exp Clin Cancer Res,2023,42(1): 108. [20] Wakil SJ, Abuelheiga LA. Fatty acid metabolism: target for metabolic syndrome. J Lipid Res,2009,50: S138-S143. [21] Wang MD, Wu H, Fu GB, et al. Acetyl-coenzyme A carboxylase alpha promotion of glucose-mediated fatty acid synthesis enhances survival of hepatocellular carcinoma in mice and patients. Hepatology,2016,63(4): 1272-1286. [22] Flavin R, Peluso S, Nguyen PL, et al. Fatty acid synthase as a potential therapeutic target in cancer. Future Oncol,2010,6(4): 551-562. [23] Li Y, Yang W, Zheng Y,et al. Targeting fatty acid synthase modulates sensitivity of hepatocellular carcinoma to sorafenib via ferroptosis. J Exp Clin Cancer Res,2023,42(1): 6. [24] Cao D, Song X, Che L, et al. Both de novo synthetized and exogenous fatty acids support the growth of hepatocellular carcinoma cells. Liver Int,2017,37(1): 80-89. [25] Hulver MW, Berggren JR, Carper MJ, et al. Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle contributes to abnormal fatty acid partitioning in obese humans. Cell Metab,2005,2(4): 251-261. [26] Liu HH, Xu Y, Li CJ, et al. An SCD1-dependent mechanoresponsive pathway promotes HCC invasion and metastasis through lipid metabolic reprogramming. Mol Ther,2022,30(7): 2554-2567. [27] Goldberg IJ, Eckel RH, Abumrad NA. Regulation of fatty acid uptake into tissues: lipoprotein lipase-and CD36-mediated pathways. J Lipid Res, 2009,50: S86-S90. [28] Bergers G, Fendt SM. The metabolism of cancer cells during metastasis. Nat Rev Cancer,2021,21(3): 162-180. [29] Tao L, Ding X, Yan L, et al. CD36 accelerates the progression of hepatocellular carcinoma by promoting FAs absorption. Med Oncol,2022,39(12): 202. [30] Luo X, Zheng E, Wei L, et al. The fatty acid receptor CD36 promotes HCC progression through activating Src/PI3K/AKT axis-dependent aerobic glycolysis. Cell Death Dis,2021,12(4): 328. [31] Hong J, Liu J, Zhang Y, et al. MiR-3180 inhibits hepatocellular carcinoma growth and metastasis by targeting lipid synthesis and uptake. Cancer Cell Int, 2023,23(1): 66. [32] Doege H, Baillie RA, Ortegon AM,et al. Targeted deletion of FATP5 reveals multiple functions in liver metabolism: alterations in hepatic lipid homeostasis. Gastroenterology,2006,130: 1245-1258. [33] Maxfield FR, Tabas I. Role of cholesterol and lipid organization in disease. Nature,2005,438: 612-621. [34] Neuschwander‐tetri BA. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of no triglyceride fatty acid metabolites. Hepatology,2010,52: 774-788. [35] Hu J, Liu N, Song D,et al. A positive feedback between cholesterol synthesis and the pentose phosphate pathway rather than glycolysis promotes hepatocellular carcinoma. Oncogene,2023,42(39): 2892-2904. [36] Tang W, Zhou J, Yang W, et al. Aberrant cholesterol metabolic signaling impairs antitumor immunosurveillance through natural killer T cell dysfunction in obese liver. Cell Mol Immunol,2022,19(7): 834-847. [37] Li Z, Wang Y, Xing R, et al. Cholesterol efflux drives the generation of immunosuppressive macrophages to promote the progression of human hepatocellular carcinoma. Cancer Immunol Res,2023,11(10): 1400-1413. [38] Yuan J, Lyu T, Yang J, et al. The lipid transporter HDLBP promotes hepatocellular carcinoma metastasis through BRAF-dependent epithelial-mesenchymal transition. Cancer Lett,2022,28(549): 215921. [39] Che L, Chi W, Qiao Y, et al. Cholesterol biosynthesis supports the growth of hepatocarcinoma lesions depleted of fatty acid synthase in mice and humans. Gut,2020,69(1): 177-186. [40] Zhang F, Gao J, Liu X, et al. LATS-regulated nuclear-cytoplasmic translocation of SREBP2 inhibits hepatocellular carcinoma cell migration and invasion via epithelial-mesenchymal transition. Mol Carcinog,2023,62(7):963-974. [41] Shao WQ, Zhu WW, Luo MJ, et al. Cholesterol suppresses GOLM1-dependent selective autophagy of RTKs in hepatocellular carcinoma. Cell Rep,2022,39(3): 110712. [42] Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol,2008,9: 139-150. [43] Dressler KA, Mathias S, Kolesnick RN. Tumor necrosis factor-α activates the sphingomyelin signal transduction pathway in a cell-free system. Science,1992,255: 1715-1718. [44] Zhang X, Zhuge J, Liu J, et al. Prognostic signatures of sphingolipids: Understanding the immune landscape and predictive role in immunotherapy response and outcomes of hepatocellular carcinoma. Front Immunol,2023,14: 1153423. [45] Sasset L, Di LA. Sphingolipid metabolism and signaling in endothelial cell functions. Adv Exp Med Biol,2022,1372: 87-117. [46] Wang X, Qiu Z, Dong W, et al. S1PR1 induces metabolic reprogramming of ceramide in vascular endothelial cells, affecting hepatocellular carcinoma angiogenesis and progression. Cell Death Dis,2022,13(9): 768. [47] Tagaram HR, Divittore NA, Barth BM, et al. Nanoliposomal ceramide prevents in vivo growth of hepatocellular carcinoma. Gut,2011,60(5): 695-701. [48] Li G, Liu D, Kimchi ET, et al. Nanoliposome C6-ceramide increases the anti-tumor immune response and slows growth of liver tumors in mice. Gastroenterology,2018,154(4): 1024-1036. [49] Miura K, Nagahashi M, Prasoon P,et al. Dysregulation of sphingolipid metabolic enzymes leads to high levels of sphingosine-1-phosphate and ceramide in human hepatocellular carcinoma. Hepatol Res,2021,51(5): 614-626. [50] Cheng JC, Wang EY, Yi Y, et al. S1P stimulates proliferation by upregulating CTGF expression through S1PR2-mediated YAP activation. Mol Cancer Res,2018,16(10): 1543-1555. [51] Li M, Tang Y, Wang D, et al. Sphingosine-1-phosphate transporter spinster homolog 2 is essential for iron-regulated metastasis of hepatocellular carcinoma. Mol Ther,2022,30(2): 703-713. [52] Liu H, Ma Y, He HW, et al. SPHK1 (sphingosine kinase 1) induces epithelial-mesenchymal transition by promoting the autophagy-linked lysosomal degradation of CDH1/E-cadherin in hepatoma cells. Autophagy,2017,13(5): 900-913. [53] Tallima H, Azzazy HME, El RR. Cell surface sphingomyelin: key role in cancer initiation, progression, and immune evasion. Lipids Health Dis,2021,20(1): 150. [54] Li Z, Guan M, Lin Y, et al. Aberrant lipid metabolism in hepatocellular carcinoma revealed by liver lipidomics. Int J Mol Sci,2017,18(12): 2550. [55] Lin M, Liao W, Dong M, et al. Exosomal neutral sphingomyelinase 1 suppresses hepatocellular carcinoma via decreasing the ratio of sphingomyelin/ceramide. FEBS J,2018,285(20): 3835-3848. [56] D’angelo G, Moorthi S, Luberto C. Role and function of sphingomyelin biosynthesis in the development of cancer. Adv Cancer Res,2018,140: 61-96. [57] Lu H, Zhou L, Zuo H, et al. Overriding sorafenib resistance via blocking lipid metabolism and Ras by sphingomyelin synthase 1 inhibition in hepatocellular carcinoma. Cancer Chemother Pharmacol,2021,87(2): 217-228. [58] Schnaar RL. Glycosphingolipids in cell surface recognition. Glycobiology,1991,1: 477-485. [59] Schömel N, Geisslinger G, Wegner MS. Influence of glycosphingolipids on cancer cell energy metabolism. Prog Lipid Res,2020,79: 101050. [60] Jennemann R, Federico G, Mathow D, et al. Inhibition of hepatocellular carcinoma growth by blockade of glycosphingolipid synthesis. Oncotarget,2017,8(65): 109201-109216. [61] Su T, Qin XY, Dohmae N,et al. Inhibition of ganglioside synthesis suppressed liver cancer cell proliferation through targeting kinetochore metaphase signaling. Metabolites,2021,11(3): 167. [62] Zhu J, Wang Y, Yu Y, et al. Aberrant fucosylation of glycosphingolipids in human hepatocellular carcinoma tissues. Liver Int,2014,34(1): 147-160. [63] Zhong WX, Honke K, Long ZY, et al. Lactosylsulfatide expression in hepatocellular carcinoma cells enhances cell adhesion to vitronectin and intrahepatic metastasis in nude mice. Int J Cancer,2004,110(4): 504-510. [64] Makide K, Kitamura H, Sato Y, et al. Emerging lysophospholipid mediators, lysophosphatidylserine, lysophosphatidylthreonine, lysophosphatidylethanolamine and lysophosphatidylglycerol. Prostaglandins Other Lipid Mediat,2009,89(3-4): 135-139. [65] Grzelczyk A, Gendaszewska-darmach E. Novel bioactive glycerol-based lysophospholipids: new data --new insight into their function. Biochimie,2013,95(4): 667-679. [66] Ouben AJ, Moolenaar WH. Autotaxin and LPA receptor signaling in cancer. Cancer Metastasis Rev,2011,30(3-4): 557-565. [67] Guri Y, Colombi M, Dazert E, et al. mTORC2 promotes tumorigenesis via lipid synthesis. Cancer Cell,2017,32(6): 807-823. [68] Zhong H, Xiao M, Zarkovic K, et al. Mitochondrial control of apoptosis through modulation of cardiolipin oxidation in hepatocellular carcinoma: A novel link between oxidative stress and cancer. Free Radic Biol Med,2017,102: 67-76. [69] Guan Y, Chen X, Wu M, et al. The phosphatidylethanolamine biosynthesis pathway provides a new target for cancer chemotherapy. J Hepatol,2020,72(4): 746-760. [70] Cheng X, Li L, Thorpe PE, et al. Antibody-mediated blockade of phosphatidylserine enhances the antitumor effect of sorafenib in hepatocellular carcinomas xenografts. Ann Surg Oncol,2016,23: 583-591. [71] Mokdad AA, Zhu H, Beg MS, et al. Efficacy and safety of bavituximab in combination with sorafenib in advanced hepatocellular carcinoma: A single-arm, open-label, phase II clinical trial. Target Oncol,2019,14(5): 541-550. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||