[1] Ferrer Inaebnit E, Molina Romero FX, Segura Sampedro JJ, et al. A review of the diagnosis and management of liver hydatid cyst. Rev Esp Enferm Dig,2022,114(1):35-41. [2] 汪艳,罗威,徐培豪. 普美显增强MRI与增强CT在肝脏局灶性病变良恶性鉴别诊断中的应用. 中国CT和MRI杂志,2023,21(7):115-118. [3] Anteby R, Klang E, Horesh N, et al. Deep learning for noninvasive liver fibrosis classification: A systematic review. Liver Int,2021,41(10):2269-2278. [4] 李晓洁,赵国家,任金河. 双模态超声深度学习预测模型诊断乳腺癌的应用. 中国临床研究,2024,37(3):365-369,e374. [5] 吴旋音,田果,曹红翠,等. Sonazoid超声造影与增强磁共振成像对肝脏局灶性病变的诊断价值比较. 中华超声影像学杂志,2021,30(6):494-499. [6] Stollmayer R, Budai BK, Rónaszéki A, et al. Focalliver lesion MRI feature identification using efficient net and MONAI: A feasibility study. Cells, 2022,11(9):1558. [7] Wang G, Liu X, Shen J, et al. A deep-learning pipeline for the diagnosis and discrimination of viral, non-viral and COVID-19 pneumonia from chest X-ray images. Nat Biomed Eng, 2021,5(6):509-521. . [8] 何玉虹,闻宝杰,于鹏丽,等. 高频超声造影在浅表肝脏局灶性病变检出及诊断中的临床价值. 临床超声医学杂志,2024,26(8):673-677. [9] 谭玉英,张鑫,张娟子,等. MRI联合血清GPC3水平鉴别肝脏结节性增生病灶临床应用价值研究. 实用肝脏病杂志,2022,25(1):88-91. [10] Wesdorp NJ, Zeeuw JM, Postma SCJ, et al. Deep learning models for automatic tumor segmentation and total tumor volume assessment in patients with colorectal liver metastases. Eur Radiol Exp,2023,7(1):75. [11] 陆雪松,闫书豪. 基于迭代卷积神经网络的肝脏MRI图像分割. 中南民族大学学报(自然科学版),2022,41(3):319-325. [12] 徐瀚峰,陈慧娟,杨晖,等. 异常凝血酶原等三项指标联合检测对甲胎蛋白阴性原发性肝癌的诊断价值. 中国临床研究,2023,36(9):1302-1306. [13] Gong EJ, Bang CS, Lee JJ, et al. Deep learning-based clinical decision support system for gastric neoplasms in real-time endoscopy: development and validation study. Endoscopy, 2023,55(8):701-708. [14] 毛静怡,宋余庆,刘哲. 多尺度深度特征提取的肝脏肿瘤CT图像分类. 中国图象图形学报,2021,26(7):1704-1715. [15] 刘朋伟,高媛,秦品乐,等. 基于多尺度残差的生成对抗网络医学MRI影像超分辨率重建. 中北大学学报(自然科学版),2021,42(5):449-459. [16] Ampavathi A, Saradhi TV. Multi disease-prediction framework using hybrid deep learning: an optimal prediction model. Comput Methods Biomech Biomed Engin, 2021,24(10):1146-1168. [17] 陶海粟,黎柏宏,曾小军,等. 基于深度学习构建微创肝切除术关键解剖结构识别模型的应用价值. 中华消化外科杂志,2024,23(4):590-595. [18] Kim JH, Yoon HJ, Lee E, et al. Validation ofdeep-learning image reconstruction for low-dose chest computed tomography scan: Emphasis on image quality and noise. Korean J Radiol,2021,22(1):131-138. [19] 代小兵,刘启榆,吴俊辉. 磁共振增强扫描弥散加权成像对肝脏良恶性肿瘤的鉴别诊断价值研究. 实用肝脏病杂志,2021,24(2):268-271. [20] Oestmann PM, Wang CJ, Savic LJ, et al. Deep learning-assisted differentiation of pathologically proven atypical and typical hepatocellular carcinoma (HCC) versus non-HCC on contrast-enhanced MRI of the liver. Eur Radiol,2021,31(7):4981-4990. |