Journal of Practical Hepatology ›› 2024, Vol. 27 ›› Issue (1): 155-158.doi: 10.3969/j.issn.1672-5069.2024.01.040
Pan Qin, Xue Rui, Fan Jiangao
Received:
2023-05-15
Online:
2024-01-10
Published:
2024-01-04
Pan Qin, Xue Rui, Fan Jiangao. Macrographic phenotype of docosahexaenoic acid metabolism plays a role in nonalcoholic steatohepatitis[J]. Journal of Practical Hepatology, 2024, 27(1): 155-158.
[1] Wang FS,Fan JG,Zhang Z,et al.The global burden of liver disease:the major impact of China.Hepatology,2014,60(6):2099-2108. [2] Fan JG,Wei L,Zhuang H.Guidelines of prevention and treatment of nonalcoholic fatty liver disease (2018, China).J Dig Dis,2019,20(4):163-173. [3] Liu XL,Pan Q,Cao HX,et al.Lipotoxic hepatocyte-derived exosomal microRNA 192-5p activates macrophages through rictor/akt/forkhead box transcription factor O1 signaling in nonalcoholic fatty liver disease.Hepatology,2020,72(2):454-469. [4] Dasgupta D,Nakao Y,Mauer AS,et al.IRE1A stimulates hepatocyte-derived extracellular vesicles that promote inflammation in mice with steatohepatitis. Gastroenterology,2020,159(4):1487-1503. [5] Xiong X,Kuang H,Ansari S, et al.Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secretome gene analysis.Mol Cell,2019,75(3):644-660. [6] Li L,Cui L,Lin P,et al.Kupffer-cell-derived IL-6 is repurposed for hepatocyte dedifferentiation via activating progenitor genes from injury-specific enhancers.Cell stem cell,2023,30(3):283-299. [7] Kaufmann B,Reca A, Kim AD,et al.Novel mechanisms for resolution of liver inflammation: therapeutic implications.Semin Liver Dis,2021,41(2):150-162. [8] Fu X,Yin HH,Wu MJ,et al.High sensitivity and wide linearity LC-MS/MS method for oxylipin quantification in multiple biological samples.J Lipid Res,2022,63(12):100302. [9] Nguyen TM,Agbohessou PS,Nguyen TH,et al.Immune responses and acute inflammation in common carp Cyprinus carpio injected by E.coli lipopolysaccharide (LPS) as affected by dietary oils.Fish Shellfish Immunol,2022,122:1-12. [10] Han YH,Lee K,Saha A,et al.Specialized proresolving mediators for therapeutic interventions targeting metabolic and inflammatory disorders.Biomol Ther (Seoul). 2021,29(5):455-464. [11] Leuti A,Fazio D,Fava M,et al.Bioactive lipids, inflammation and chronic diseases.Adv Drug Deliv Rev,2020,159:133-169. [12] Park JL,Langmead Christopher J, Riddy Darren M. New advances in targeting the resolution of inflammation: implications for specialized pro-resolving mediator GPCR drug discovery.ACS Pharmacol Transl Sci,2020,3(1):88-106. [13] Wang H,Zhang H,Wang Y,et al.Regulatory T-cell and neutrophil extracellular trap interaction contributes to carcinogenesis in non-alcoholic steatohepatitis.J Hepatol,2021,75(6):1271-1283. [14] Calcagno D M,Chu A,Gaul S,et al.NOD‐like receptor protein 3 activation causes spontaneous inflammation and fibrosis that mimics human NASH.Hepatology,2022,76(3): 727-741. [15] Spite M.Resolving inflammation in nonalcoholic steatohepatitis.J Clin Invest,2019,129(4):1524-1526. [16] Sugimoto S,Mena HA, Sansbury BE, et al.Brown adipose tissue-derived MaR2 contributes to cold-induced resolution of inflammation.Nat Metab,2022,4(6):775-790. [17] Norris PC,Libreros S,Serhan CN.Resolution metabolomes activated by hypoxic environment.Sci Adv,2019,5(10):eaax4895. [18] Rodríguez MJ, Sabaj M, Tolosa G,et al.Maresin-1 prevents liver fibrosis by targeting Nrf2 and NF-κB, reducing oxidative stress and inflammation.Cells,2021,10(12):3406. [19] Yang W,Tao K,Zhang P,et al.Maresin 1 protects against lipopolysaccharide/d-galactosamine-induced acute liver injury by inhibiting macrophage pyroptosis and inflammatory response.Biochem Pharmacol,2022,195:114863. [20] Li J,Zhang Z,Wang L,et al.Maresin 1 attenuates lipopolysaccharide-induced acute kidney injury via inhibiting NOX4/ROS/NF-κB pathway.Front Pharmacol,2021,12:782660. [21] Zhang P,Yin Y,Wang T,et al.Maresin 1 mitigates concanavalin A-induced acute liver injury in mice by inhibiting ROS-mediated activation of NF-κB signaling.Free Radic Biol Med,2020,147:23-36. [22] Tang D,Fu G,Li W,et al.Maresin 1 protects the liver against ischemia/reperfusion injury via the ALXR/Akt signaling pathway.Mol Med,2021,27(1):18. [23] Li R,Xie L,Li L,et al.The gut microbial metabolite, 3,4-dihydroxyphenylpropionic acid, alleviates hepatic ischemia/reperfusion injury via mitigation of macrophage pro-inflammatory activity in mice.Acta Pharm Sin B,2022,12(1):182-196. [24] Ghiboub M,Zhao J,Li Yim AYF,et al.HDAC3 mediates the inflammatory response and LPS tolerance in human monocytes and macrophages.Front Immunol,2020,11:550769. [25] Pentagna N,Pinheiro da Costa T,Soares Dos Santos Cardoso F,et al.Epigenetic control of myeloid cells behavior by histone deacetylase activity (HDAC) during tissue and organ regeneration in Xenopus laevis.Dev Comp Immunol,2021,114:103840. [26] Körner A,Zhou E,Müller C,et al.Inhibition of Δ24-dehydrocholesterol reductase activates pro-resolving lipid mediator biosynthesis and inflammation resolution.Proc Natl Acad Sci USA,2019,116(41):20623-20634. [27] Friedemann B, Simona P,Jordan Paul M,et al.Allosteric activation of 15-lipoxygenase-1 by boswellic acid induces the lipid mediator class switch to promote resolution of Inflammation.Adv Sci (Weinh),2023,10(6):e2205604. [28] Han YH,Shin KO,Kim JY,et al.A maresin 1/RORα/12-lipoxygenase autoregulatory circuit prevents inflammation and progression of nonalcoholic steatohepatitis.J Clin Invest,2019,129(4):1684-1698. [29] Olaniyi KS,Amusa OA.Sodium acetate-mediated inhibition of histone deacetylase alleviates hepatic lipid dysregulation and its accompanied injury in streptozotocin-nicotinamide-induced diabetic rats.Biomed Pharmacother,2020,128:110226. [30] Zhou D,Chen YW,Zhao ZH,et al.Sodium butyrate reduces high-fat diet-induced non-alcoholic steatohepatitis through upregulation of hepatic GLP-1R expression.Exp Mol Med,2018,50(12):1-12. [31] Fang X,Wang H,Ye T, et al.Low serum Maresin-1 levels are associated with non-alcoholic fatty liver disease: a cross-sectional study.Lipids Health Dis,2021,20(1):96. [32] Witayavanitkul N,Werawatganon D,Chayanupatkul M,et al.Genistein and exercise treatment reduced NASH related HDAC3,IL-13 and MMP-12 expressions in ovariectomized rats fed with high fat high fructose diet.J Tradit Complement Med, 2021,11(6):503-512. [33] Li G,Lin J,Zhang C,et al.Microbiota metabolite butyrate constrains neutrophil functions and ameliorates mucosal inflammation in inflammatory bowel disease.Gut Microbes, 2021,13(1):1968257. [34] Noureddine N,Hartling I,Wawrzyniak P,et al.Lipid emulsion rich in n-3 polyunsaturated fatty acids elicits a pro-resolution lipid mediator profile in mouse tissues and in human immune cells.Am J Clin Nutr,2022,116(3):786-797. [35] Maciejewska-Markiewicz D,Stachowska E,Hawryłkowicz V,et al.The role of resolvins,protectins and marensins in non-alcoholic fatty liver disease (NAFLD).Biomolecules,2021,11(7):937. [36] Huang HM,Fan SJ,Zhou XR,et al.Histone deacetylase inhibitor givinostat attenuates nonalcoholic steatohepatitis and liver fibrosis.Acta Pharmacol Sin,2022,43(4):941-953. [37] Lee JG,Lee J,Lee AR,et al.Impact of short-chain fatty acid supplementation on gut inflammation and microbiota composition in a murine colitis model.J Nutr Biochem, 2022,101:108926. [38] Liu W,Luo X,Tang J,et al.A bridge for short-chain fatty acids to affect inflammatory bowel disease,type 1 diabetes,and non-alcoholic fatty liver disease positively:by changing gut barrier.Eur J Nutr,2021,60(5):2317-2330. [39] Hayashi A,Nagao-Kitamoto H,Kitamoto S,et al.The butyrate-producing bacterium clostridium butyricum suppresses clostridioides difficile infection via neutrophil- and antimicrobial cytokine-dependent but GPR43/109a-independent mechanisms.J Immunol,2021,206(7):1576-1585. [40] Guarino MPL, Altomare A, Emerenziani S, et al.Mechanisms of action of prebiotics and their effects on gastro-intestinal disorders in adults.Nutrients,2020,12(4):1037. [41] Amiri P,Arefhosseini S,Bakhshimoghaddam F,et al.Mechanistic insights into the pleiotropic effects of butyrate as a potential therapeutic agent on NAFLD management: A systematic review.Front Nutr,2022,9:1037696. [42] Zou F,Qiu Y,Huang Y,et al.Effects of short-chain fatty acids in inhibiting HDAC and activating p38 MAPK are critical for promoting B10 cell generation and function.Cell Death Dis,2021,12(6):582. [43] Song T,Guan X,Wang X,et al.Dynamic modulation of gut microbiota improves post‐myocardial infarct tissue repair in rats via butyric acid‐mediated histone deacetylase inhibition.The FASEB J,2021,35(3): e21385. [44] Jiang L,Wang J,Liu Z,et al.Sodiumbutyrate alleviates lipopolysaccharide-induced inflammatory responses by down-regulation of NF-κB, NLRP3 signaling pathway, and activating histone acetylation in bovine macrophages.Front Vet Sci,2020,7:579674. [45] Wu SE,Hashimoto-Hill S,Woo V,et al.Microbiota-derived metabolite promotes HDAC3 activity in the gut.Nature,2020,586(7827):108-112. [46] Honma K,Oshima K,Takami S, et al.Regulation of hepatic genes related to lipid metabolism and antioxidant enzymes by sodium butyrate supplementation.Metabol Open,2020,7:100043. [47] He J,Chu Y,Li J,et al.Intestinal butyrate-metabolizing species contribute to autoantibody production and bone erosion in rheumatoid arthritis.Sci Adv,2022,8(6):eabm1511. [48] Snodgrass RG,Benatzy Y,Schmid T,et al.Efferocytosis potentiates the expression of arachidonate 15-lipoxygenase (ALOX15) in alternatively activated human macrophages through LXR activation.Cell Death Differ,2021,28(4):1301-1316. [49] Zhou D,Pan Q,Liu XL,et al.Clostridium butyricum B1 alleviates high-fat diet-induced steatohepatitis in mice via enterohepatic immunoregulation.J Gastroenterol Hepatol,2017,32(9):1640-1648. [50] Zhou D,Fan JG.Microbial metabolites in non-alcoholic fatty liver disease.World J Gastroenterol,2019,25(17):2019-2028. [51] Gao F,Lyu YW,Long J,et al.Butyrate improves the metabolic disorder and gut microbiome dysbiosis in mice induced by a high-fat diet.Front Pharmacol,2019,10:1040. [52] Zhao ZH,Wang ZX,Zhou D,et al.Sodium butyrate supplementation inhibits hepatic steatosis by stimulating liver kinase B1 and insulin-induced gene.Cell Mol Gastroenterol Hepatol,2021,12(3):857-871. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||