实用肝脏病杂志 ›› 2025, Vol. 28 ›› Issue (4): 485-488.doi: 10.3969/j.issn.1672-5069.2025.04.002
侯宇, 邹光旭, 赵英鹏
收稿日期:
2024-11-13
出版日期:
2025-07-10
发布日期:
2025-07-14
通讯作者:
赵英鹏,E-mail:15877991038@163.com
作者简介:
侯宇,男,硕士研究生。研究方向:肝脏疾病临床诊治研究。E-mail:20221569@kmmu.edu.cn
基金资助:
Hou Yu, Zou Guangxu, Zhao Yingpeng
Received:
2024-11-13
Online:
2025-07-10
Published:
2025-07-14
侯宇, 邹光旭, 赵英鹏. 代谢组学观点:揭示两种类型的脂肪性肝病*[J]. 实用肝脏病杂志, 2025, 28(4): 485-488.
Hou Yu, Zou Guangxu, Zhao Yingpeng. A metabolomics perspective: unveiling two types of fatty liver diseases[J]. Journal of Practical Hepatology, 2025, 28(4): 485-488.
[1] Wong V W, Ekstedt M, Wong G L, et al. Changing epidemiology, global trends and implications for outcomes of NAFLD. J Hepatol, 2023, 79(3): 842-852. [2] Younossi Z M, Golabi P, Paik J M, et al. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review. Hepatology, 2023, 77(4): 1335-1347. [3] Sandlers Y. The future perspective: Metabolomics in laboratory medicine for inborn errors of metabolism. Transl Res, 2017, 189: 65-75. [4] 王慧星, 盛佳洁, 李萌. 代谢组学技术在心肌梗死生物标志物筛选中的研究进展. 心脑血管病防治, 2024, 24(4): 45-48. [5] Wang J H, Byun J, Pennathur S. Analytical approaches to metabolomics and applications to systems biology. Semin Nephrol, 2010, 30(5): 500-511. [6] Christofk H, Metallo C, Liu G, et al. Metabolic heterogeneity in humans. Cell, 2024, 187(15): 3821-3823. [7] Loomba R, Friedman S L, Shulman G I. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell, 2021, 184(10): 2537-2564. [8] Friedman S L, Neuschwander-Tetri B A, Rinella M, et al. Mechanisms of NAFLD development and therapeutic strategies. Nat Med, 2018, 24(7): 908-922. [9] Powell E E, Wong V W, Rinella M. Non-alcoholic fatty liver disease. Lancet, 2021, 397(10290): 2212-2224. [10] Alves-Bezerra M, Cohen D E. Triglyceride metabolism in the liver. Compr Physiol, 2017, 8(1): 1-8. [11] Holeek M. The role of skeletal muscle in the pathogenesis of altered concentrations of branched-chain amino acids (valine, leucine, and isoleucine) in liver cirrhosis, diabetes, and other diseases. Physiol Res, 2021, 70(3): 293-305. [12] Newgard C B, An J, Bain J R, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and leanhumans and contributes to insulin resistance. Cell Metab, 2009, 9(4): 311-326. [13] Lo E K K, Felicianna, Xu J H, et al. The emerging role of branched-chain amino acids in liver diseases. Biomedicines, 2022, 10(6): 1444. [14] Grzych G, Vonghia L, Bout M A, et al. Plasma bcaa changes in patients with NAFLD are sex dependent. J Clin Endocrinol Metab, 2020, 105(7): 175. [15] Lee M S, Han H J, Han S Y, et al. Loss of the e3 ubiquitin ligase mkrn1 represses diet-induced metabolic syndrome through ampk activation. Nat Commun, 2018, 9(1): 3404. [16] Zhang Y, Zhan L, Zhang L, et al. Branched-chain amino acids in liver diseases: Complexity and controversy. Nutrients, 2024, 16(12): 1875. [17] Feldman A, Eder S K, Felder T K, et al. Clinical and metabolic characterization of obese subjects without non-alcoholic fatty liver: A targeted metabolomics approach. Diabetes Metab, 2019, 45(2): 132-139. [18] de Mello V D, Sehgal R, Männistö V, et al. Serum aromatic and branched-chain amino acids associated with NASH demonstrate divergent associations with serum lipids. Liver Int, 2021, 41(4): 754-763. [19] Sehgal R, Ilha M, Vaittinen M, et al. Indole-3-propionic acid, a gut-derived tryptophan metabolite, associates with hepatic fibrosis. Nutrients, 2021, 13(10): 3509. [20] Hu C, Wang T, Zhuang X, et al. Metabolic analysis of early nonalcoholic fatty liver disease in humans using liquid chromatography-mass spectrometry. J Transl Med, 2021, 19(1): 152. [21] Dong S, Zhan Z Y, Cao H Y, et al. Urinary metabolomics analysis identifies key biomarkers of different stages of nonalcoholic fatty liver disease. World J Gastroenterol, 2017, 23(15): 2771-2784. [22] Mowry C J, Alonso C, Iruarrizaga-Lejarreta M, et al. Utility of metabolomic biomarkers to identify nonalcoholic fatty liver disease in liver transplant recipients. Transplant Direct, 2021, 7(12): e784. [23] Masarone M, Troisi J, Aglitti A, et al. Untargeted metabolomics as a diagnostic tool in NAFLD: Discrimination of steatosis, steatohepatitis and cirrhosis. Metabolomics, 2021, 17(2): 12. [24] Cabré N, Luciano-Mateo F, Baiges-Gayà G, et al. Plasma metabolic alterations in patients with severe obesity and non-alcoholic steatohepatitis. Aliment Pharmacol Ther, 2020, 51(3): 374-387. [25] Paul B, Lewinska M, Andersen J B. Lipid alterations in chronic liver disease and liver cancer. JHEP Rep, 2022, 4(6): 100479. [26] Gao S S, Shen Y L, Chen Y W, et al. Liver metabolomics analysis revealing key metabolites associated with different stages of nonalcoholic fatty liver disease in hamsters. Comb Chem High Throughput Screen, 2024, 27(9): 1303-1317. [27] Xie S, Yuan L, Sui Y, et al. Nme4 mediates metabolic reprogramming and promotes nonalcoholic fatty liver disease progression. EMBO Rep, 2024, 25(1): 378-403. [28] Tian Y, Jellinek M J, Mehta K, et al. Membrane phospholipid remodeling modulates nonalcoholic steatohepatitis progression by regulating mitochondrial homeostasis. Hepatology, 2024, 79(4): 882-897. [29] 赵驿歌, 赵一颖, 丰晨然, 等. 高脂饮食诱导的非酒精性脂肪肝大鼠模型的代谢组学研究. 中南药学, 2023, 21(11): 2920-2925. [30] McGlinchey A J, Govaere O, Geng D, et al. Metabolic signatures across the full spectrum of non-alcoholic fatty liver disease. JHEP Rep, 2022, 4(5): 100477. [31] Mogna-Peláez P, Romo-Hualde A, Riezu-Boj J I, et al. Isoliquiritigenin in combination with visceral adipose tissue and related markers as a predictive tool for nonalcoholic fatty liver disease. J Physiol Biochem, 2024, 80(3): 639-653. [32] Noureddin M, Truong E, Mayo R, et al. Serum identification of at-risk mash: The metabolomics-advanced steatohepatitis fibrosis score (masef). Hepatology, 2024, 79(1): 135-148. [33] Rinella M E, Lazarus J V, Ratziu V, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology, 2023, 78(6): 1966-1986. [34] Ma X, Chen A, Melo L, et al. Loss of hepatic drp1 exacerbates alcoholic hepatitis by inducing megamitochondria and mitochondrial maladaptation. Hepatology, 2023, 77(1): 159-175. [35] Paquot N. [the metabolism of alcohol]. Rev Med Liege, 2019, 74(5-6): 265-267. [36] Cederbaum A I. Alcohol metabolism. Clin Liver Dis, 2012, 16(4): 667-685. [37] Lu Y, Cederbaum A I. Cyp2e1 and oxidative liver injury by alcohol. Free Radic Biol Med, 2008, 44(5): 723-738. [38] Zakhari S. Overview: How is alcohol metabolized by the body? Alcohol Res Health, 2006, 29(4): 245-254. [39] Shi C, Wang L, Zhou K, et al. Targeted metabolomics identifies differential serum and liver amino acids biomarkers in rats with alcoholic liver disease. J Nutr Sci Vitaminol (Tokyo), 2020, 66(6): 536-544. [40] Kumar U, Sharma S, Durgappa M, et al. Serum metabolic disturbances associated with acute-on-chronic liver failure in patients with underlying alcoholic liver diseases: An elaborative nmr-based metabolomics study. J Pharm Bioallied Sci, 2021, 13(2): 276-282. [41] Huang Y, Niu M, Jing J, et al. Metabolomic analysis uncovers energy supply disturbance as an underlying mechanism of the development of alcohol-associated liver cirrhosis. Hepatol Commun, 2021, 5(6): 961-975. [42] Xu R, Vatsalya V, He L, et al. Altered urinary tryptophan metabolites in alcohol-associated liver disease. Alcohol Clin Exp Res (Hoboken), 2023, 47(9): 1665-1676. [43] Xu R, He L, Vatsalya V, et al. Metabolomics analysis of urine from patients with alcohol-associated liver disease reveals dysregulated caffeine metabolism. Am J Physiol Gastrointest Liver Physiol, 2023, 324(2): G142-g154. [44] Calzadilla N, Zilberstein N, Hanscom M, et al. Serum metabolomic analysis in cirrhotic alcohol-associated liver disease patients identified differentially altered microbial metabolites and novel potential biomarkers for disease severity. Dig Liver Dis, 2024, 56(6): 923-931. [45] Fitzinger J, Rodriguez-Blanco G, Herrmann M, et al. Gender-specific bile acid profiles in non-alcoholic fatty liver disease. Nutrients, 2024, 16(2): 250. [46] Wang Y, Zou Z, Wang S, et al. Golden bile powder prevents drunkenness and alcohol-induced liver injury in mice via the gut microbiota and metabolic modulation. Chin Med, 2024, 19(1): 39. [47] Sun Y Y, Wu D Q, Yin N N, et al. Arrb2 causes hepatic lipid metabolism disorder via ampk pathway based on metabolomics in alcoholic fatty liver. Clin Sci (Lond), 2021, 135(10): 1213-1232. [48] Dong T, Hu G, Fan Z, et al. Activation of gpr3-β-arrestin2-pkm2 pathway in kupffer cells stimulates glycolysis and inhibits obesity and liver pathogenesis. Nat Commun, 2024, 15(1): 807. [49] Thiele M, Suvitaival T, Trošt K, et al. Sphingolipids are depleted in alcohol-related liver fibrosis. Gastroenterology, 2023, 164(7): 1248-1260. |
[1] | 石丹丹, 艾碧琛, 马祺鑫, 李木兰, 张毅, 刘杰. 胆汁酸受体FXR对非酒精性脂肪性肝病糖脂代谢的作用研究进展*[J]. 实用肝脏病杂志, 2025, 28(4): 489-492. |
[2] | 倪沈珏, 王鹏飞, 黄燕华, 曹利华. 非酒精性脂肪性肝病患者血清Maresin-1、网膜蛋白-1和微小RNA-125b水平变化及其与病情严重程度的关系研究*[J]. 实用肝脏病杂志, 2025, 28(4): 533-536. |
[3] | 张淑玮, 张惠娟, 周杰. 罗格列酮联合二甲双胍治疗非酒精性脂肪性肝病合并T2DM患者临床疗效研究*[J]. 实用肝脏病杂志, 2025, 28(4): 545-548. |
[4] | 王新田, 姚兰, 许珂, 韦颖. 非酒精性脂肪性肝病患者血清铁、铁蛋白轻链、不饱和铁结合力和转铁蛋白水平变化及其临床意义探讨*[J]. 实用肝脏病杂志, 2025, 28(4): 549-552. |
[5] | 陈春如, 齐浩龙, 鲁聪, 戴锴, 余佳. 昼夜节律在非酒精性脂肪性肝病发病过程中的作用研究进展*[J]. 实用肝脏病杂志, 2025, 28(3): 321-325. |
[6] | 陆逸凡, 陈号, 怀家轩, 孙婧, 王高祥, 吴其标, 周希乔. 桥本氏甲状腺炎与非酒精性脂肪性肝病关系研究进展*[J]. 实用肝脏病杂志, 2025, 28(3): 326-329. |
[7] | 温大超, 张秋萍, 石凌. 穴位贴敷联合运动处方治疗非酒精性脂肪性肝病患者疗效初步研究*[J]. 实用肝脏病杂志, 2025, 28(3): 370-373. |
[8] | 马晨曦, 许静, 王艳秋. 超声声衰减系数联合血清ALT/AST比值评估非酒精性脂肪性肝病患者肝脂肪变程度价值研究*[J]. 实用肝脏病杂志, 2025, 28(3): 374-377. |
[9] | 王新田, 康晓波, 吴霞, 韦颖. 非酒精性脂肪性肝病患者血清OCN、β-CTX和血管紧张素水平变化及其临床意义探讨*[J]. 实用肝脏病杂志, 2025, 28(3): 378-381. |
[10] | 曾艾, 王聪, 李敏, 赵伊婷, 张琴, 何梅. 剪切波弹性成像联合APRI诊断2型糖尿病合并NAFLD患者肝纤维化程度价值研究*[J]. 实用肝脏病杂志, 2025, 28(3): 382-385. |
[11] | 刘倩倩, 段志娇, 陈平. 无创性评估非酒精性脂肪性肝病患者肝纤维化应用进展*[J]. 实用肝脏病杂志, 2025, 28(3): 477-480. |
[12] | 王小燕, 崔文星, 陈超. FibroTouch©和CT定量检查诊断脂肪肝人群NASH效能研究*[J]. 实用肝脏病杂志, 2025, 28(2): 198-201. |
[13] | 韩悦, 翟菲菲, 张晴, 孟慧敏. 超声衰减成像系数诊断非酒精性脂肪性肝病患者肝脏脂肪变性程度价值研究*[J]. 实用肝脏病杂志, 2025, 28(2): 202-205. |
[14] | 钱平安, 姜煜资, 聂红明. 穴位贴敷疗法联合运动处方治疗非酒精性脂肪性肝病患者疗效初步研究*[J]. 实用肝脏病杂志, 2025, 28(2): 206-209. |
[15] | 吴彬彬, 李丹丹, 王子铭. 非酒精性脂肪性肝病合并2型糖尿病患者尿微量白蛋白及血清糖化血红蛋白和甲状腺激素水平变化*[J]. 实用肝脏病杂志, 2025, 28(2): 210-213. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||