实用肝脏病杂志 ›› 2025, Vol. 28 ›› Issue (3): 321-325.doi: 10.3969/j.issn.1672-5069.2025.03.001
• 专家论坛 • 下一篇
陈春如, 齐浩龙, 鲁聪, 戴锴, 余佳
收稿日期:
2024-11-20
发布日期:
2025-05-14
通讯作者:
余佳,E-mail:yogaqq116@whu.edu.cn
作者简介:
陈春如,女,22岁,大学本科在读。E-mail:chenchunru2472@163.com
基金资助:
Chen Chunru, Qi Haolong, Lu Cong, et al
Received:
2024-11-20
Published:
2025-05-14
陈春如, 齐浩龙, 鲁聪, 戴锴, 余佳. 昼夜节律在非酒精性脂肪性肝病发病过程中的作用研究进展*[J]. 实用肝脏病杂志, 2025, 28(3): 321-325.
Chen Chunru, Qi Haolong, Lu Cong, et al. Impact of circadian rhythms on pathogenesis of non-alcoholic fatty liver disease[J]. Journal of Practical Hepatology, 2025, 28(3): 321-325.
[1] Patke A, Young M W, Axelrod S. Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol, 2020,21(2):67-84. [2] Joshi A, Upadhyay K K, Vohra A, et al. Melatonin induces Nrf2-HO-1 reprogramming and corrections in hepatic core clock oscillations in Non-alcoholic fatty liver disease. FASEB J,2021,35(9):e21803. [3] Tahara Y, Shibata S. Chrono-biology, chrono-pharmacology, and chrono-nutrition. J Pharmacol Sci, 2014,124(3):320-335. [4] Eslam M, Sanyal A J, George J. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology, 2020,158(7):1999-2014. [5] Gnocchi D, Custodero C, Sabba C, et al. Circadian rhythms: a possible new player in non-alcoholic fatty liver disease pathophysiology. J Mol Med (Berl), 2019,97(6):741-759. [6] Pilorz V, Helfrich-Forster C, Oster H. The role of the circadian clock system in physiology. Pflugers Arch, 2018,470(2):227-239. [7] Sprenger R R, Hermansson M, Neess D, et al. Lipid molecular timeline profiling reveals diurnal crosstalk between the liver and circulation. Cell Rep, 2021,34(5):108710. [8] Held N M, Wefers J, van Weeghel M, et al. Skeletal muscle in healthy humans exhibits a day-night rhythm in lipid metabolism. Mol Metab, 2020,37:100989. [9] Dyar K A, Lutter D, Artati A, et al. Atlas of circadian metabolism reveals system-wide coordination and communication between clocks. Cell, 2018,174(6):1571-1585. [10] Lange M, Angelidou G, Ni Z, et al. AdipoAtlas: A reference lipidome for human white adipose tissue. Cell Rep Med, 2021,2(10):100407. [11] Li J, Vungarala S, Somers V K, et al. Rest-activity rhythm is associated with obesity phenotypes: A cross-sectional analysis. Front Endocrinol (Lausanne), 2022,13:907360. [12] Petrenko V, Sinturel F, Riezman H, et al. Lipid metabolism around the body clocks. Prog Lipid Res, 2023,91:101235. [13] Chen Y, Chen X, Gao J, et al. Long noncoding RNA FLRL2 alleviated nonalcoholic fatty liver disease through Arntl-Sirt1 pathway. FASEB J, 2019,33(10):11411-11419. [14] Cohen J C, Horton J D, Hobbs H H. Human fatty liver disease: old questions and new insights. Science, 2011,332(6037):1519-1523. [15] Fabbrini E, Mohammed B S, Magkos F, et al. Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease. Gastroenterology, 2008,134(2):424-431. [16] Ray S, Valekunja U K, Stangherlin A, et al. Circadian rhythms in the absence of the clock gene Bmal1. Science, 2020,367(6479):800-806. [17] Ehlen J C, Brager A J, Baggs J, et al. Bmal1 function in skeletal muscle regulates sleep. Elife, 2017,6. [18] Welz P S, Benitah S A. Molecular connections between circadian clocks and aging. J Mol Biol, 2020,432(12):3661-3679. [19] Viebahn G, Hartmann P, Lang S, et al. Fungal signature differentiates alcohol-associated liver disease from nonalcoholic fatty liver disease. Gut Microbes, 2024,16(1):2307586. [20] Xu L, Yang T Y, Zhou Y W, et al. Bmal1 inhibits phenotypic transformation of hepatic stellate cells in liver fibrosis via IDH1/alpha-KG-mediated glycolysis. Acta Pharmacol Sin, 2022,43(2):316-329. [21] Jokl E, Llewellyn J, Simpson K, et al. Circadian disruption primes myofibroblasts for accelerated activation as a mechanism underpinning fibrotic progression in non-alcoholic fatty liver disease. Cells, 2023,12(12):612-618. [22] Shen X, Zhang Y, Ji X, et al. Long noncoding RNA lncRHL regulates hepatic VLDL secretion by modulating hnRNPU/BMAL1/MTTP axis. Diabetes, 2022,71(9):1915-1928. [23] Chen Y, Chen X, Gao J, et al. Long noncoding RNA FLRL2 alleviated nonalcoholic fatty liver disease through Arntl-Sirt1 pathway. FASEB J, 2019,33(10):11411-11419. [24] Aggarwal S, Rastogi A, Maiwall R, et al. Palmitic acid causes hepatocyte inflammation by suppressing the BMAL1-NAD(+)-SIRT2 axis. J Physiol Biochem, 2024. [25] Jouffe C, Weger B D, Martin E, et al. Disruption of the circadian clock component BMAL1 elicits an endocrine adaption impacting on insulin sensitivity and liver disease. Proc Natl Acad Sci U S A, 2022,119(10):e2094884177. [26] Rada P, Gonzalez-Rodriguez A, Garcia-Monzon C, et al. Understanding lipotoxicity in NAFLD pathogenesis: is CD36 a key driver? Cell Death Dis, 2020,11(9):802. [27] Zhan C, Chen H, Zhang Z, et al. BMAL1 deletion protects against obesity and non-alcoholic fatty liver disease induced by a high-fat diet. Int J Obes (Lond), 2024,48(4):469-476. [28] Liu C, Zhou B, Meng M, et al. FOXA3 induction under endoplasmic reticulum stress contributes to non-alcoholic fatty liver disease. J Hepatol, 2021,75(1):150-162. [29] Larion S, Padgett C A, Butcher J T, et al. The biological clock enhancer nobiletin ameliorates steatosis in genetically obese mice by restoring aberrant hepatic circadian rhythm. Am J Physiol Gastrointest Liver Physil, 2022,323(4):G387-G400. [30] Carbone A, De Santis E, Cela O, et al. The histone variant macroH2A1 impacts circadian gene expression and cell phenotype in an in vitro model of hepatocellular carcinoma. Biomedicines, 2021,9(8):312-316. [31] Larion S, Padgett C A, Butcher J T, et al. The biological clock enhancer nobiletin ameliorates steatosis in genetically obese mice by restoring aberrant hepatic circadian rhythm. Am J Physiol Gastrointest Liver Physiol, 2022,323(4):G387-G400. [32] Chou C F, Zhu X, Lin Y Y, et al. KSRP is critical in governing hepatic lipid metabolism through controlling Per2 expression. J Lipid Res, 2015,56(2):227-240. [33] Viebahn G, Hartmann P, Lang S, et al. Fungal signature differentiates alcohol-associated liver disease from nonalcoholic fatty liver disease. Gut Microbes, 2024,16(1):2307586. [34] Zhao D, Wang X, Liu H, et al. Effect of circadian rhythm change on gut microbiota and the development of nonalcoholic fatty liver disease in mice. Sleep Med, 2024,117:131-138. [35] Matenchuk B A, Mandhane P J, Kozyrskyj A L. Sleep, circadian rhythm, and gut microbiota. Sleep Med Rev, 2020,53:101340. [36] Song D, Ho C T, Zhang X, et al. Modulatory effect of Cyclocarya paliurus flavonoids on the intestinal microbiota and liver clock genes of circadian rhythm disorder mice model. Food Res Int, 2020,138(Pt A):109769. [37] Liang X, Bushman F D, FitzGerald G A. Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock. Proc Natl Acad Sci U S A, 2015,112(33):10479-10484. [38] Tosini G, Ferguson I, Tsubota K. Effects of blue light on the circadian system and eye physiology. Mol Vis, 2016,22:61-72. [39] Chen Y T, Huang P Y, Chai C Y, et al. Early detection of the initial stages of LED light-triggered non-alcoholic fatty liver disease by wax physisorption kinetics-Fourier transform infrared imaging. Analyst, 2023,148(3):643-653. [40] Shen X, Chen Y, Zhang J, et al. Low-dose PCB126 compromises circadian rhythms associated with disordered glucose and lipid metabolism in mice. Environ Int, 2019,128:146-157. [41] Abraham A, Chakraborty P. A review on sources and health impacts of bisphenol A. Rev Environ Health, 2020,35(2):201-210. [42] Motta G, Thangaraj S V, Padmanabhan V. Developmental programming: Impact of prenatal exposure to bisphenol A on senescence and circadian mediators in the liver of sheep. Toxics, 2023,12(1):23-27. [43] Roy S, Abudu A, Salinas I, et al. Androgen-mediated perturbation of the hepatic circadian system through epigenetic modulation promotes NAFLD in PCOS mice. Endocrinology, 2022,163(10):723-728. [44] Zhao Y, Yan Y, Xie L, et al. Long-term environmental exposure to microcystins increases the risk of nonalcoholic fatty liver disease in humans: A combined fisher-based investigation and murine model study. Environ Int, 2020,138:105648. [45] Park H, Lee S J. Working hours and nonalcoholic fatty liver disease according to sleep duration. Chronobiol Int, 2019,36(12):1671-1680. [46] Vetrani C, Barrea L, Verde L, et al. Evening chronotype is associated with severe NAFLD in obesity. Int J Obes (Lond), 2022,46(9):1638-1643. [47] Ruiz-Lozano T, Vidal J, de Hollanda A, et al. Evening chronotype associates with obesity in severely obese subjects: interaction with CLOCK 3111T/C. Int J Obes (Lond), 2016,40(10):1550-1557. [48] Lotti S, Pagliai G, Colombini B, et al. Chronotype differences in energy intake, cardiometabolic risk parameters, cancer, and depression: A systematic review with Meta-analysis of observational studies. Adv Nutr, 2022,13(1):269-281. [49] Castelnuovo G, Perez-Diaz-Del-Campo N, Rosso C, et al. Impact of chronotype and Mediterranean diet on the risk of liver fibrosis in patients with non-alcoholic fatty liver disease. Nutrients, 2023,15(14):1126-1129. [50] Bernsmeier C, Weisskopf D M, Pflueger M O, et al. Sleep disruption and daytime sleepiness correlating with disease severity and insulin resistance in non-alcoholic fatty liver disease: A comparison with healthy controls. PLoS One, 2015,10(11):e143293. [51] Akram S T, Ewy M W, Said A. Sleep disruption in nonalcoholic fatty liver disease: What is the role of lifestyle and diet? Eur J Gastroenterol Hepatol, 2021,33(1S Suppl 1):e308-e312. [52] Gu W, Han T, Sun C. Association of 24 h behavior rhythm with non-alcoholic fatty liver disease among American adults with overweight/obesity. Nutrients, 2023,15(9):738-743. [53] Nassir F, Ibdah J A. Sirtuins and nonalcoholic fatty liver disease. World J Gastroenterol, 2016,22(46):10084-10092. [54] Yang Z, Kim H, Ali A, et al. Interaction between stress responses and circadian metabolism in metabolic disease. Liver Res, 2017,1(3):156-162. [55] Panda S. Circadian physiology of metabolism. Science, 2016,354(6315):1008-1015. [56] Ribas-Aulinas F, Ribo S, Parra-Vargas M, et al. Neonatal overfeeding during lactation rapidly and permanently misaligns the hepatic circadian rhythm and programmes adult NAFLD. Mol Metab, 2021,45(1)5-7. [57] Xia J, Guo W, Hu M, et al. Resynchronized rhythmic oscillations of gut microbiota drive time-restricted feeding induced nonalcoholic steatohepatitis alleviation. Gut Microbes, 2023,15(1):2221450. [58] Zeb F, Osaili T, Obaid R S, et al. Gut Microbiota and time-restricted feeding/eating: A targeted biomarker and approach in precision nutrition. Nutrients, 2023,15(2):125-128. [59] Heo N J, Park H E, Yoon J W, et al. The association between vitamin D and nonalcoholic fatty liver disease assessed by controlled attenuation parameter. J Clin Med, 2021,10(12):812-816. [60] Liu Y, Li Q, Wang H, et al. Fish oil alleviates circadian bile composition dysregulation in male mice with NAFLD. J Nutr Biochem, 2019,69:53-62. [61] Shang T, Liu L, Zhou J, et al. Protective effects of various ratios of DHA/EPA supplementation on high-fat diet-induced liver damage in mice. Lipids Health Dis, 2017,16(1):65. [62] Parker H M, Cohn J S, O'Connor H T, et al. Effect of fish oil supplementation on hepatic and visceral fat in overweight men: A randomized controlled trial. Nutrients, 2019,11(2):141-145. [63] Malhotra S, Sawhney G, Pandhi P. The therapeutic potential of melatonin: a review of the science. Med Gen Med, 2004,6(2):46. [64] Vasey C, McBride J, Penta K. Circadian rhythm dysregulation and restoration: The role of melatonin. Nutrients, 2021,13(10):812-815. [65] Hong F, Pan S, Xu P, et al. Melatonin orchestrates lipid homeostasis through the hepatointestinal circadian clock and microbiota during constant light exposure. Cells, 2020,9(2):165-169. [66] Sohrabi M, Gholami A, Amirkalali B, et al. Is melatonin associated with pro-inflammatory cytokine activity and liver fibrosis in non-alcoholic fatty liver disease (NAFLD) patients? Gastroenterol Hepatol Bed Bench, 2021,14(3):229-236. [67] Guan Q, Wang Z, Hu K, et al. Melatonin ameliorates hepatic ferroptosis in NAFLD by inhibiting ER stress via the MT2/cAMP/PKA/IRE1 signaling pathway. Int J Biol Sci, 2023,19(12):3937-3950. [68] Saha M, Das S, Manna K, et al. Melatonin targets ferroptosis through bimodal alteration of redox environment and cellular pathways in NAFLD model. Biosci Rep, 2023,43(10):913-917. |
[1] | 陆逸凡, 陈号, 怀家轩, 孙婧, 王高祥, 吴其标, 周希乔. 桥本氏甲状腺炎与非酒精性脂肪性肝病关系研究进展*[J]. 实用肝脏病杂志, 2025, 28(3): 326-329. |
[2] | 温大超, 张秋萍, 石凌. 穴位贴敷联合运动处方治疗非酒精性脂肪性肝病患者疗效初步研究*[J]. 实用肝脏病杂志, 2025, 28(3): 370-373. |
[3] | 马晨曦, 许静, 王艳秋. 超声声衰减系数联合血清ALT/AST比值评估非酒精性脂肪性肝病患者肝脂肪变程度价值研究*[J]. 实用肝脏病杂志, 2025, 28(3): 374-377. |
[4] | 王新田, 康晓波, 吴霞, 韦颖. 非酒精性脂肪性肝病患者血清OCN、β-CTX和血管紧张素水平变化及其临床意义探讨*[J]. 实用肝脏病杂志, 2025, 28(3): 378-381. |
[5] | 曾艾, 王聪, 李敏, 赵伊婷, 张琴, 何梅. 剪切波弹性成像联合APRI诊断2型糖尿病合并NAFLD患者肝纤维化程度价值研究*[J]. 实用肝脏病杂志, 2025, 28(3): 382-385. |
[6] | 刘倩倩, 段志娇, 陈平. 无创性评估非酒精性脂肪性肝病患者肝纤维化应用进展*[J]. 实用肝脏病杂志, 2025, 28(3): 477-480. |
[7] | 王小燕, 崔文星, 陈超. FibroTouch©和CT定量检查诊断脂肪肝人群NASH效能研究*[J]. 实用肝脏病杂志, 2025, 28(2): 198-201. |
[8] | 韩悦, 翟菲菲, 张晴, 孟慧敏. 超声衰减成像系数诊断非酒精性脂肪性肝病患者肝脏脂肪变性程度价值研究*[J]. 实用肝脏病杂志, 2025, 28(2): 202-205. |
[9] | 钱平安, 姜煜资, 聂红明. 穴位贴敷疗法联合运动处方治疗非酒精性脂肪性肝病患者疗效初步研究*[J]. 实用肝脏病杂志, 2025, 28(2): 206-209. |
[10] | 吴彬彬, 李丹丹, 王子铭. 非酒精性脂肪性肝病合并2型糖尿病患者尿微量白蛋白及血清糖化血红蛋白和甲状腺激素水平变化*[J]. 实用肝脏病杂志, 2025, 28(2): 210-213. |
[11] | 苏雅, 王炳元. 酒精性肝病不是代谢相关性脂肪性肝病[J]. 实用肝脏病杂志, 2025, 28(1): 5-8. |
[12] | 马敏, 许巧云. 非酒精性脂肪性肝病患者血清Arg-1水平和ApoB/ApoA1比值变化及其临床意义探讨*[J]. 实用肝脏病杂志, 2025, 28(1): 52-55. |
[13] | 郑慧慧, 王玉蓉, 宰国田. 非酒精性脂肪性肝病合并颈动脉粥样硬化斑块患者血清IL-17、IFN-γ和IL-6变化及其临床意义探讨*[J]. 实用肝脏病杂志, 2025, 28(1): 56-59. |
[14] | 沈玥, 朱宁, 王海. FibroTouch检测参数诊断非酒精性脂肪性肝炎患者效能分析*[J]. 实用肝脏病杂志, 2025, 28(1): 60-63. |
[15] | 贾纪会, 张译之, 林静, 兰佳庆, 陈煜, 段钟平, 张晓慧. 柚皮苷调节NAFLD小鼠脂代谢紊乱机制研究*[J]. 实用肝脏病杂志, 2024, 27(6): 816-819. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||