[1] Dyson J K, Beuers U, Jones D E J, et al. Primary sclerosing cholangitis. Lancet, 2018, 391(10139): 2547-2559. [2] Hasegawa S, Yoneda M, Kurita Y, et al. Cholestatic liver disease: current treatment strategies and new therapeutic agents. Drugs, 2021, 81(10): 1181-1192. [3] Visseren T, Erler N S, Polak W G, et al. Recurrence of primary sclerosing cholangitis after liver transplantation-analysing the European Liver Transplant Registry and beyond. Transpl Int, 2021, 34(8): 1455-1467. [4] Lammert F, Gurusamy K, Ko C W, et al. Gallstones. Nat Rev Dis Primers, 2016, 2: 16024. [5] Razumilava N, Gores G J. Cholangiocarcinoma. The Lancet, 2014, 383(9935): 2168-2179. [6] Said K, Glaumann H, Bergquist A. Gallbladder disease in patients with primary sclerosing cholangitis. J Hepatol, 2008, 48(4): 598-605. [7] Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet, 2014, 23(R1): R89-R98. [8] Emdin C A, Khera A V, Kathiresan S. Mendelian randomization. JAMA, 2017, 318(19): 1925-1926. [9] Ji S G, Juran B D, Mucha S, et al. Genome-wide association study of primary sclerosing cholangitis identifies new risk loci and quantifies the genetic relationship with inflammatory bowel disease. Nat Genet, 2017, 49(2): 269-273. [10] Sakaue S, Kanai M, Tanigawa Y, et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat Genet, 2021, 53(10): 1415-1424. [11] Chen L, Yang H, Li H, et al. Insights into modifiable risk factors of cholelithiasis: a Mendelian randomization study. Hepatology, 2022, 75(4): 785-796. [12] Hemani G, Tilling K, Davey Smith G. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet, 2017, 13(11): e1007081. [13] Burgess S, Thompson S G. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol, 2017, 32(5): 377-389. [14] Bowden J, Davey Smith G, Haycock P C, et al. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol, 2016, 40(4): 304-314. [15] Verbanck M, Chen C Y, Neale B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet, 2018, 50(5): 693-698. [16] Burgess S, Bowden J, Fall T, et al. Sensitivity analyses for robust causal inference from Mendelian randomization analyses with multiple genetic variants. Epidemiology, 2017, 28(1): 30-42. [17] Hemani G, Zheng J, Elsworth B, et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife, 2018, 7:e34408. [18] Peiseler M, Tacke F. Bile duct-associated macrophages enter the spotlight in inflammatory cholestatic liver disease. Hepatology, 2024, 79(2): 257-260. [19] Lazaridis K N, Larusso N F. Primary sclerosing cholangitis. N Engl J Med, 2016, 375(12): 1161-1170. [20] Hov J R, Karlsen T H. The microbiota and the gut-liver axis in primary sclerosing cholangitis. Nat Rev Gastroenterol Hepatol, 2023, 20(3): 135-154. [21] Christina V, Carl J, Annika B. Treatment of cholangiocarcinoma in patients with primary sclerosing cholangitis: a comprehensive review. eGastroenterology, 2024, 2(1): e100045. [22] González M I, Vannan D T, Eksteen B, et al. Mast cells in immune-mediated cholangitis and cholangiocarcinoma. Cells, 2022, 11(3):375. [23] Weiss G A, Hennet T. Mechanisms and consequences of intestinal dysbiosis. Cell Mol Life Sci, 2017, 74(16): 2959-2977. [24] Di Ciaula A, Wang D Q, Portincasa P. Cholesterol cholelithiasis: part of a systemic metabolic disease, prone to primary prevention. Expert Rev Gastroenterol Hepatol, 2019, 13(2): 157-171. [25] Yuan S, Gill D, Giovannucci E L, et al. Obesity, type 2 diabetes, lifestyle factors, and risk of gallstone disease: a Mendelian randomization investigation. Clin Gastroenterol Hepatol, 2022, 20(3): e529-e537. [26] Ebert E C, Nagar M, Hagspiel K D. Gastrointestinal and hepatic complications of sickle cell disease. Clin Gastroenterol Hepatol, 2010, 8(6): 483-489. [27] Smith G D, Ebrahim S. 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol, 2003, 32(1): 1-22. [28] Carter A R, Anderson E L. Correct illustration of assumptions in Mendelian randomization. Int J Epidemiol, 2024, 53(2):dyae050. [29] Bowden J, Holmes M V. Meta-analysis and Mendelian randomization: a review. Res Synth Methods, 2019, 10(4): 486-496. [30] 郭银燕, 岳枝, 盖晓冬, 等. 自身免疫性肝炎-原发性胆汁性胆管炎重叠综合征患者临床和肝组织病理学特征分析. 实用肝脏病杂志, 2023, 26(3): 372-375. [31] 陈慧婷, 周永健. 慢性胆汁淤积性肝病患者肠-肝轴功能变化研究进展. 实用肝脏病杂志, 2023, 26(3): 305-307. [32] Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol, 2015, 44(2): 512-525. |