[1] 董敏,吴东昊,江婷,等. 阿替利珠单克隆抗体联合贝伐珠单克隆抗体一线治疗HCC术后复发的临床疗效. 中华消化外科杂志,2021,20(S2):5-9. [2] 胡鸿涛,郭晨阳,赵晓辉,等. PLC局部介入治疗与免疫治疗联合的现状、挑战及应对策略. 中华内科杂志,2022,61(5):455-459. [3] 方勇超,王强,唐权,等.MSCT与MRI动态增强扫描对高血供肝内胆管癌与HCC的诊断价值分析.实用肝脏病杂志,2020,23(6):885-888. [4] Lee JS, Choi GM, Kim BS, et al. Comparison of true and virtual non-contrast images of liver obtained with single-source twin beam and dual-source dual-energy CT. J Korean Soc Radiol,2023,84(1):170-184. [5] Jing M, Sun J, Xi H, et al. Abdominal virtual non-contrast images derived from energy spectrum CT to evaluate chemotherapy-related fatty liver disease. Quant Imaging Med Surg, 2023,13(2):669-681. [6] Marrero JA, Ahn J, Rajender Reddy K. ACG clinical guideline: the diagnosis and management of focal liver lesions. Am J Gastroenterol, 2014,109(9):1328-1348. [7] 陈启全,李晓婷,杨勋祎,等. 超声造影、剪切波弹性成像和增强CT检查诊断HCC价值分析. 实用肝脏病杂志,2023,26(3):408-411. [8] 金良红,李兴杰,关红博,等.双能量CT碘定量结合动态对比增强MRI评估肝硬化患者肝脏血流动力学和肝功能临床价值研究.实用肝脏病杂志,2019,22(5):712-715. [9] Kayano S, Takano H, Takane Y, et al. Relationship between quantitativeness of iodine and accuracy of virtual non-contrast image in dual-energy computed tomography. Nihon Hoshasen Gijutsu Gakkai Zasshi, 2019,75(3):247-253. [10] Shirasaka T, Kojima T, Yamane S, et al. Effect of iodine concentration and body size on iodine subtraction in virtual non-contrast imaging: a phantom study. Radiography (Lond), 2023,29(3):557-563. [11] Li W, Li R, Zhao X, et al. Differentiation of hepatocellular carcinoma from hepatic hemangioma and focal nodular hyperplasia using computed tomographic spectral imaging. J Clin Transl Hepatol, 2021,9(3):315-323. [12] Azuma M, Nakada H, Khant ZA, et al. Virtual noncontrast images derived from contrast-enhanced dual-layer spectral abdominal computed tomography: a pilot study between pediatric and adult scans. J Comput Assist Tomogr, 2022,46(1):71-77. [13] Kim S, Kang BS, Kwon WJ, et al. Abdominal organs attenuation values and abdominal aortic calcifications on virtual and true noncontrast images obtained with third-generation dual-source dual-energy computed tomography. J Comput Assist Tomogr, 2020,44(4):490-500. [14] Kim CG, Kim SH, Cho SH, et al. Comparison of radiation dose and image quality between the 2nd generation and 3rd generation dual-source single-energy and dual-source dual-energy CT of the abdomen. J Korean Soc Radiol, 2022,83(6):1342-1353. [15] Wrazidlo R, Walder L, Estler A, et al. Radiation dose reduction in contrast-enhanced abdominal CT: comparison of photon-counting detector CT with 2nd generation dual-source dual-energy CT in an oncologic cohort. Acad Radiol, 2023,30(5):855-862. [16] Agostini A, Mari A, Lanza C, et al. Trends in radiation dose and image quality for pediatric patients with a multidetector CT and a third-generation dual-source dual-energy CT. Radiol Med, 2019,124(8):745-752. [17] Kawashima H, Ichikawa K, Ueta H, et al. Virtual monochromatic images of dual-energy CT as an alternative to single-energy CT: performance comparison using a detectability index for different acquisition techniques. Eur Radiol, 2023,33(8):5752-5760. [18] Liu LP, Shapira N, Chen AA, et al. First-generation clinical dual-source photon-counting CT: ultra-low-dose quantitative spectral imaging. Eur Radiol, 2022,32(12):8579-8587. [19] Jiang X, Yang X, Hintenlang DE, et al. Effects of patient size and radiation dose on iodine quantification in dual-source dual-energy CT. Acad Radiol, 2021,28(1):96-105. [20] Laukamp KR, Ho V, Obmann VC, et al. Virtual non-contrast for evaluation of liver parenchyma and vessels: results from 25 patients using multi-phase spectral-detector CT. Acta Radiol, 2020,61(8):1143-1152. [21] Atwi NE, Smith DL, Flores CD, et al. Dual-energy CT in the obese: a preliminary retrospective review to evaluate quality and feasibility of the single-source dual-detector implementation. Abdom Radiol (NY), 2019,44(2):783-789. |