[1] 赵妍姝. 基于胆红素、胆酸盐转运体和代谢酶系统初探栀子退黄利胆作用的分子机制.兰州大学,2017. [2] Zhu L, Wang L, Cao F, et al. Modulation of transport and metabolism of bile acids and bilirubin by chlorogenic acid against hepatotoxicity and cholestasis in bile duct ligation rats: involvement of SIRT1-mediated deacetylation of FXR and PGC-1α. J Hepatobiliary Pancreat Sci, 2018,25(3):195-205. [3] Jia W, Wei M, Rajani C, et al. Targeting the alternative bile acid synthetic pathway for metabolic diseases. Protein Cell, 2021,12(5):411-425. [4] Wahlström A, Sayin SI, Marschall HU, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab, 2016,24(1):41-50. [5] Soroka CJ, Boyer JL. Biosynthesis and trafficking of the bile salt export pump, BSEP: therapeutic implications of BSEP mutations. Mol Aspects Med, 2014,37:3-14. [6] Chang JH, Plise E, Cheong J, et al. Evaluating the in vitro inhibition of UGT1A1, OATP1B1, OATP1B3, MRP2, and BSEP in predicting drug-induced hyperbilirubinemia. Mol Pharm, 2013,10(8):3067-3075. [7] Trauner M, Boyer JL. Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev, 2003,83(2):633-671. [8] Chang JH, Plise E, Cheong J, et al. Evaluating the in vitro inhibition of UGT1A1, OATP1B1, OATP1B3, MRP2, and BSEP in predicting drug-induced hyperbilirubinemia. Mol Pharm, 2013,10(8):3067-3075. [9] 黄龙,陈煜,吴桥,等.舒肝宁注射液对于氯丙嗪引起的新型组织工程肝构建的胆汁淤积型药物性肝损伤模型的影响.临床肝胆病杂志,2022,38(3): 587-593. [10] 赵元辰,苏婷.四个经典方利胆和调整肠道菌群作用的研究.光明中医,2019,34(17):2750-2752. [11] Yang J, Xiang D, Xiang D, et al. Baicalin protects against 17α-ethinylestradiol-induced cholestasis via the sirtuin1/hepatic nuclear receptor-1α/farnesoid X receptor pathway. Front Pharmacol, 2020,10:1685. [12] van de Laarschot LF, Jansen PL, Schaap FG, et al. The role of bile salts in liver regeneration. Hepatol Int, 2016,10(5):733-740. [13] Liu B, Li Y, Ji H, et al. Glutamine attenuates obstructive cholestasis in rats via farnesoid X receptor-mediated regulation of Bsep and Mrp2. Can J Physiol Pharmacol, 2017,95(2):215-223. [14] Zhong D, Xie Z, Huang B, et al.Ganoderma lucidum polysaccharide peptide alleviates hepatoteatosis via modulating bile acid metabolism dependent on FXR-SHP/FGF. Cell Physiol Biochem, 2018,49(3):1163-1179. [15] McGettigan BM, McMahan RH, Luo Y, et al. Sevelamer improves steatohepatitis, Inhibits Liver and intestinal farnesoid X receptor (FXR), and reverses innate immune dysregulation in a mouse model of non-alcoholic fatty liver disease. J Biol Chem, 2016,291(44):23058-23067. [16] 王青,苏聪平,张惠敏,等.从炎性反应角度探讨清热解毒药的作用机制.中国中药杂志,2018,43(18):3787-3794. [17] Shan Z, Ju C. Hepatic macrophages in liver injury. Front Immunol, 2020,11:322. [18] Lu S, Wang Y, Liu J. Tumor necrosis factor-α signaling in nonalcoholic steatohepatitis and targeted therapies. J Genet Genomics, 2021,28:S1673. [19] Bonizzi G, Karin M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol, 2004,25(6):280-288. [20] 朱志辉.舒肝宁联合异甘草酸镁治疗急性肝炎的临床疗效观察.基层医学论坛,2021,25(35):5173-5175. [21] 朱永辉,邓维成,何永康,等.舒肝宁注射液对晚期血吸虫病肝纤维化患者血清转化生长因子β1、γ-干扰素水平的影响.中国老年学杂志,2012,32(8):1592-1593. [22] Naveed M, Hejazi V, Abbas M, et al. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed Pharmacother,2018,97:67-74. [23] Jiang Y, Nan H, Shi N, et al. Chlorogenic acid inhibits proliferation in human hepatoma cells by suppressing noncanonical NF-κB signaling pathway and triggering mitochondrial apoptosis. Mol Biol Rep, 2021,48(3):2351-2364. [24] Xin X, Jin Y, Wang X, et al. A combination of geniposide and chlorogenic acid combination ameliorates nonalcoholic steatohepatitis in mice by inhibiting Kupffer cell activation. Biomed Res Int, 2021,2021:6615881. [25] Jang E, Kim BJ, Lee KT, et al. A survey of therapeutic effects of artemisia capillaris in liver diseases. Evid Based Complement Alternat Med,2015,2015:728137. [26] Zhong X, Liu H. Baicalin attenuates diet induced nonalcoholic steatohepatitis by inhibiting inflammation and oxidative stress via suppressing JNK signaling pathways. Biomed Pharmacother, 2018,98:111-117. [27] Chen YS, Chen QZ, Wang ZJ, et al. Anti-inflammatory and hepatoprotective effects of ganoderma lucidum polysaccharides against carbon tetrachloride-induced liver injury in Kunming mice. Pharmacology, 2019,103(3-4):143-150. [28] García-Ruiz C, Fernández-Checa JC. Mitochondrial oxidative stress and antioxidants balance in fatty liver disease. Hepatol Commun, 2018,2(12):1425-1439. [29] Sauer H, Wartenberg M, Hescheler J. Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem, 2001,11(4):173-186. [30] Reuter S, Gupta SC, Chaturvedi MM, et al. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med, 2010,49(11):1603-1616. [31] 高文,张晓慧,张译之,等。舒肝宁注射液对非酒精性脂肪性肝病组织工程肝保护作用的机制研究.中西医结合肝病杂志,2022,32(3):248-251. [32] Zhao T, Wang Q. Capillarisin protects SH-SY5Y cells against bupivacaine-induced apoptosis via ROS-mediated PI3K/PKB pathway. Life Sci,2020,259:118279. [33] Shin JK, Lee SM. Genipin protects the liver from ischemia/reperfusion injury by modulating mitochondrial quality control. Toxicol Appl Pharmacol, 2017,328:25-33. [34] Elsharkawy AM, Mann DA. Nuclear factor-kappaB and the hepatic inflammation-fibrosis-cancer axis. Hepatology, 2007,46(2):590-597. [35] Sun B, Karin M. NF-kappaB signaling, liver disease and hepatoprotective agents. Oncogene, 2008,27(48):6228-6244. [36] Lee TY, Chang HH, Chen JH, et al. Herb medicine Yin-Chen-Hao-Tang ameliorates hepatic fibrosis in bile duct ligation rats. J Ethnopharmacol,2007,109(2):318-324. |