[1] Verkade HJ, Bezerra JA, Davenport M, et al. Biliary atresia and other cholestatic childhood diseases: advances and future challenges.J Hepatol, 2016, 65(3):631-642. [2] 金祝, 刘远梅. 基因调控在胆道闭锁发病中的作用. 中华实用儿科临床杂志, 2018, 33(11):801-804. [3] 卫园园, 陈扬, 高婷,等. 谷氨酰转肽酶测定联合超声诊断先天性胆道闭锁. 中华普通外科杂志, 2017, 32(5):425-428. [4] 吴凤, 唐维兵. 胆道闭锁诊断新进展. 中华实用儿科临床杂志, 2017, 32(23):1826-1828. [5] Sung S, Jeon TY, Yoo SY, et al. Incremental value of MR cholangiopancreatography in diagnosis of biliary atresia.PLoS One, 2016, 11(6):e0158132. [6] Kim YH, Kim MJ, Shin HJ, et al. MRI-based decision tree model for diagnosis of biliary atresia.Eur Radiol, 2018, 28(8):3422-3431. [7] Liu B, Cai J, Xu Y, et al. Three-dimensional magnetic resonance cholangiopancreatography for the diagnosis of biliary atresia in infants and neonates. PLoS One, 2014, 9(2):e88268. [8] Haafiz AB. Liver fibrosis in biliary atresia. Expert Rev Gastroenterol Hepatol, 2010, 4(3):335-343. [9] Negm AA, Petersen C, Markowski A, et al. The role of endoscopic retrograde cholangiopancreatography in the diagnosis of biliary atresia: 14 years' experience. Eur J Pediatr Surg, 2018, 28(3):261-267. [10] Holdar S, Alsaleem B, Asery A, et al. Outcome of biliary atresia among Saudi children: a tertiary care center experience. Saudi J Gastroenterol, 2019, 25(3):176-180. [11] Nizery L, Chardot C, Sissaoui S, et al. Biliary atresia: clinical advances and perspectives.Clin Res Hepatol Gastroenterol, 2016, 40(3):281-287. [12] Kerkeni Y, Ksiaa A, Belghith M, et al. Biliary atresia: experience ofAnord Africain center.Tunis Med, 2015, 93(11):683-686. [13] 周瑞洁, 明安晓, 刁美, 等. 220例Ⅲ型胆道闭锁Kasai手术预后的影响因素分析. 中华普通外科杂志, 2019, 34(8):659-662. [14] Gao F, Chen YQ, Fang J, et al. Acoustic radiation force impulse imaging for assessing liver fibrosis preoperatively in infants with biliary atresia: comparison with liver fibrosis biopsy pathology.J Ultrasound Med, 2017, 36(8):1571-1578. [15] 冯佳燕, 陈莲, 马阳阳, 等. 肝脏病理标准化评分在先天性胆道闭锁诊断中的作用和其与预后的关系. 中华病理学杂志, 2019, 48(10):755-761. [16] Polakova K, Mocikova I, Purova D, et al. Magnetic resonance cholangiopancreatography (MRCP) using new negative per-oral contrast agent based on superparamagnetic iron oxide nanoparticles for extrahepatic biliary duct visualization in liver cirrhosis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2016, 160(4):512-517. [17] Kim DB, Paik CN, Song DS, et al. The role of endoscopic ultrasonography and magnetic resonance cholangiopancreatography in patients with acute pancreatitis after negative computed tomography findings of the etiology. Pancreas, 2018, 47(9):1165-1171. [18] Nam JG, Lee JM, Kang HJ, et al. GRASE revisited: breath-hold three-dimensional (3D) magnetic resonance cholangiopancreatography using a gradient and spin echo (GRASE) technique at 3T.Eur Radiol, 2018, 28(9):3721-3728. [19] Lee JK, Kim WJ, Moon SJ, et al. Epidemiology of biliary atresia in Korea.J Korean Med Sci, 2017, 32(4):656-660. [20] Siles P, Aschero A, Gorincour G, et al. A prospective pilot study: can the biliary tree be visualized in children younger than 3 months on magnetic resonance cholangiopancreatography.Pediatr Radiol, 2014, 44(9):1077-1084. |