[1]Marchisello S, Di Pino A, Scicali R, et al. Pathophysiological, molecular and therapeutic issues of nonalcoholic fatty liver disease: An overview. Int J Mol Sci, 2019, 20(8): 1948. [2]Friedman S L, Neuschwander-Tetri B A, Rinella M, et al. Mechanisms of NAFLD development and therapeutic strategies. Nature Medicine, 2018, 24(7): 908-922. [3]Solinas P, Isola M, Lilliu M A, et al. Animal models are reliably mimicking human diseases? A morphological study that compares animal with human NAFLD. Microsc Res Tech, 2014, 77(10): 790-796. [4]Trak-Smayra V, Paradis V, Massart J, et al. Pathology of the liver in obese and diabetic ob/ob and db/db mice fed a standard or high-calorie diet. Int J Exp Pathol, 2011, 92(6): 413-421. [5]Yang S Q, Lin H Z, Lane M D, et al. Obesity increases sensitivity to endotoxin liver injury: Implications for the pathogenesis of steatohepatitis. Proc Natl Acad Sci U S A, 1997, 94(6): 2557-2562. [6]Leclercq I A, Farrell G C, Schriemer R, et al. Leptin is essential for the hepatic fibrogenic response to chronic liver injury. J Hepatol, 2002, 37(2): 206-213. [7]Gupta A, Leslie N R. Controlling PTEN (phosphatase and tensin homolog) stability: A dominant role for lysine 66. J Biol Chem, 2016, 291(35): 18465-18473. [8]Zhang X. NAFLDrelated-HCC: The relationship with metabolic disorders. Adv Exp Med Biol, 2018, 1061: 55-62. [9]Stiles B, Wang Y, Stahl A, et al. Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity [corrected]. Proc Natl Acad Sci U S A, 2004, 101(7): 2082-2087. [10] Horie Y, Suzuki A, Kataoka E, et al. Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Invest, 2004, 113(12): 1774-1783. [11] Nakayama H, Otabe S, Ueno T, et al. Transgenic mice expressing nuclear sterol regulatory element-binding protein 1c in adipose tissue exhibit liver histology similar to nonalcoholic steatohepatitis. Metabolism, 2007, 56(4): 470-475. [12] Eccleston H B, Andringa K K, Betancourt A M, et al. Chronic exposure to a high-fat diet induces hepatic steatosis, impairs nitric oxide bioavailability, and modifies the mitochondrial proteome in mice. Antioxid Redox Signal, 2011, 15(2): 447-459. [13] Asgharpour A, Cazanave S C, Pacana T, et al. A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer. J Hepatol, 2016, 65(3): 579-588. [14] Subramanian S, Goodspeed L, Wang S, et al. Dietary cholesterol exacerbates hepatic steatosis and inflammation in obese LDL receptor-deficient mice. J Lipid Res, 2011, 52(9): 1626-1635. [15] Savard C, Tartaglione E V, Kuver R, et al. Synergistic interaction of dietary cholesterol and dietary fat in inducing experimental steatohepatitis. Hepatology, 2013, 57(1): 81-92. [16] Takahashi Y, Soejima Y, Fukusato T. Animal models of nonalcoholic fatty liver disease /nonalcoholic steatohepatitis. World J Gastroenterol, 2012, 18(19): 2300-2308. [17] Matsuzawa N, Takamura T, Kurita S, et al. Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet. Hepatology, 2007, 46(5): 1392-1403. [18] Subramanian S, Goodspeed L, Wang S, et al. Dietary cholesterol exacerbates hepatic steatosis and inflammation in obese LDL receptor-deficient mice. J Lipid Res, 2011, 52(9): 1626-1635. [19] Kohli R, Kirby M, Xanthakos S A, et al. High-fructose, medium chain trans fat diet induces liver fibrosis and elevates plasma coenzyme Q9 in a novel murine model of obesity and nonalcoholic steatohepatitis. Hepatology, 2010, 52(3): 934-944. [20] Zhang X, Han J, Man K, et al. CXC chemokine receptor 3 promotes steatohepatitis in mice through mediating inflammatory cytokines, macrophages and autophagy. J Hepatol, 2016, 64(1): 160-170. [21] Kirsch R, Clarkson V, Shephard E G, et al. Rodent nutritional model of non‐alcoholic steatohepatitis: Species, strain and sex difference studies. J Gastroenterol Hepatol, 2003, 18(11): 1272-1282. [22] De Minicis S, Agostinelli L, Rychlicki C, et al. HCC development is associated to peripheral insulin resistance in a mouse model of NASH. PLoS One, 2014, 9(5): e97136. [23] 张玉佩, 孔怡琳, 杨钦河, 等. Nrf2/ARE通路相关因子在脂肪变性HepG2细胞中的表达及其意义. 中国应用生理学杂志, 2016, 32(1): 13-17. [24] Ozyra M, Johansson I, Nordling A, et al. Human hepatic 3D spheroids as a model for steatosis and insulin resistance. Sci Rep, 2018, 8(1): 14297. [25] 张程亮, 贺雯茜, 徐艳娇, 等. 果糖诱导非酒精性脂肪性肝病小鼠动物模型的构建和评价. 肝脏, 2017, 22(8): 700-704. [26] 贺雯茜, 杨金玉, 徐艳娇, 等. 果糖诱导肝脂肪变性细胞模型建立及评价. 肝脏, 2019, 24(6): 638-642. [27] Wang Y, Nicolas C T, Chen H S, et al. Recent advances in decellularization and recellularization for tissue-engineered liver grafts. Cells Tissues Organs, 2017, 203(4): 203-214. [28] Yamada M, Utoh R, Ohashi K, et al. Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions. Biomaterials, 2012, 33(33): 8304-8315. [29] Rennert K, Steinborn S, Groger M, et al. A microfluidically perfused three dimensional human liver model. Biomaterials, 2015, 71: 119-131. [30] Li Q, Uygun B E, Geerts S, et al. Proteomic analysis of naturally-sourced biological scaffolds. Biomaterials, 2016, 75: 37-46. [31] Uygun B E, Soto-Gutierrez A, Yagi H, et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med, 2010, 16(7): 814-820. [32] Wu Q, Liu J, Liu L, et al. Establishment of an ex vivo model of nonalcoholic fatty liver disease using a tissue-engineered liver. ACS Biomater Sci Engin, 2018, 4(8): 3016-3026. [33] Fakhoury-Sayegh N, Trak-Smayra V, Khazzaka A, et al. Characteristics of nonalcoholic fatty liver disease induced in wistar rats following four different diets. Nutr Res Pract, 2015, 9(4): 350-357. [34] Perfield J W, Ortinau L C, Pickering R T, et al. Altered hepatic lipid metabolism contributes to nonalcoholic fatty liver disease inleptin-deficient Ob/Ob mice. J Obes, 2013, 2013: 1-8. [35] Schattenberg J M, Galle P R. Animal models of non-alcoholic steatohepatitis: Of mice and man. Dig Dis, 2010, 28(1): 247-254. |