[1] Youssef SS, Elemeery MN, Eldein SS, et al. Silencing HCV replication in its reservoir. Open Access Maced J Med Sci, 2018, 6(11): 1965-1971. [2] Chang C, Hung CH, Wang JH, et al. Hepatitis C core antigen highly correlated to HCV RNA. Kaohsiung J Med Sci, 2018, 34(12): 684-688. [3] Hu Z, Teng XL, Zhang T, et al. SENP3 senses oxidative stress to facilitate STING-dependent dendritic cell antitumor function. Mol Cell, 2021, 81(5): 940-952. [4] Yu HI, Hsu T, Maruyama EO, et al. The requirement of SUMO2/3 for SENP2 mediated extraembryonic and embryonic development. Dev Dyn, 2020, 249(2): 237-244. [5] Vieyres G, Pietschmann T. HCVpit stop at the lipid droplet: refuel lipids and put on a lipoprotein coat before exit. Cells, 2019, 8(3): 233. [6] Long X, Zhao B, Lu W, et al. The critical roles of the SUMO-specific protease SENP3 in human diseases and clinical implications. Front Physiol, 2020, 11:558220. [7] Chen F, Ma D, Li A. SENP3 regulates high glucose-induced endothelial dysfunction via ROS dependent signaling. Diab Vasc Dis Res, 2020, 17(6):1479164120970895. [8] Costa R, Todt D, Zapatero-Belinchón F, et al. SEC14L2, a lipid-binding protein, regulates HCV replication in culture with inter- and intra-genotype variations. J Hepatol, 2019, 70(4): 603-614. [9] Hofmann S, Krajewski M, Scherer C, et al. Complex lipid metabolic remodeling is required for efficient hepatitis C virus replication. Biochim Biophys Acta Mol Cell Biol Lipids, 2018, 1863(9): 1041-1056. [10] Butt AA, Yan P, Chew KW, et al. Risk of acute myocardial infarction among hepatitis C virus (HCV)-positive and HCV-negative men at various lipid levels: results from archives. Clin Infect Dis, 2017, 65(4):557-565. [11] Graef M. Lipid droplet-mediated lipid and protein homeostasis in budding yeast. FEBS Lett, 2018, 592(8): 1291-1303. [12] Olzmann JA, Carvalho P. Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol, 2019, 20(3): 137-155. [13] Chen L, Li S, Li Y, et al. Ubiquitin-like protein modifiers and their potential for antiviral and anti-HCV therapy. Expert Rev Proteom, 2013, 10(3): 275-287. [14] Akil A, Wedeh G, Zahid Mustafa M, et al. SUMO1 depletion prevents lipid droplet accumulation and HCV replication. Arch Virol, 2016, 161(1): 141-148. [15] Liu Y, Yu F, Han Y, et al. SUMO-specific protease3 is a key regulator for hepatic lipid metabolism in non-alcoholic fatty liver disease. Sci Rep, 2016,6:37351. [16] Harada R, Kimura M, Sato Y, et al. APOB codon 4311 polymorphism is associated with hepatitis C virus infection through altered lipid metabolism. MC Gastroenterol, 2018, 18(1): 24. [17] Kejia Liu, Chu Guo, Yimin Lao, et al. A fine-tuning mechanism underlying self-control for autophagy: deSUMOylation of BECN1 by SENP3. Autophagy, 2020, 16(6): 975-990. [18] Zhang Y, Yang K, Yang J, et al. SENP3suppresses osteoclastogenesis by de-conjugating SUMO2/3 from IRF8 in none marrow-derived monocytes. Cell Rep, 2020, 30(6): 1951-1963. [19] Rawlings N, Lee L, Nakamura Y, et al. Protective role of the deSUMOylating enzyme SENP3 in myocardial ischemia-reperfusion injury. PLoS One, 2019, 14(4): e0213331. [20] Cai Z, Wang Z, Yuan R,et al. Redox-sensitive enzyme SENP3 mediates vascular remodeling via de-SUMOylation of beta-catenin and regulation of its stability. E Bio Med, 2021, 67:103386. [21] Shimotohno K. HCV assembly and egress via modifications in host lipid metabolic systems. Cold Spring Harb Perspect Med, 2021, 11(1): a036814. [22] Xi R, Kadur Lakshminarasimha Murthy P, Tung KL, et al. SENP3-mediated host defense response contains HBV replication and restores protein synthesis. PLoS One, 2019, 14(1): e0209179. |