[1] Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology, 2018,67(1):328-357. [2] 中华医学会肝病学分会脂肪肝和酒精性肝病学组,中国医师协会脂肪性肝病专家委员会.非酒精性脂肪性肝病防治指南(2018年版).实用肝脏病杂志,2018,21(2):177-186. [3] Maurice J, Manousou P. Non-alcoholic fatty liver disease. Clin Med (Lond), 2018,18(3):245-250. [4] Younossi ZM, Koenig AB, Abdelatif D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology, 2016,64(1):73-84. [5] Eslam M, Sanyal AJ, George J. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology, 2020,158(7): 1999-2014,e1. [6] Kim D, Kim W, Joo SK, et al. Subclinical hypothyroidism and low-normal thyroid function are associated with nonalcoholic steatohepatitis and fibrosis. Clin Gastroenterol Hepatol, 2018,16(1):123-131,e1. [7] He W, An X, Li L, et al. Relationship between hypothyroidism and non-alcoholic fatty liver disease: A systematic review and Meta-analysis. Front Endocrinol (Lausanne), 2017,8:335. [8] Pagadala MR, Zein CO, Dasarathy S, et al. Prevalence of hypothyroidism in nonalcoholic fatty liver disease. Dig Dis Sci, 2012,57(2):528-534. [9] Eshraghian A, Hamidian Jahromi A. Non-alcoholic fatty liver disease and thyroid dysfunction: a systematic review. World J Gastroenterol, 2014,20(25): 8102-8109. [10] Yen PM. Physiological and molecular basis of thyroid hormone action. Physiol Rev, 2001,81(3):1097-1142. [11] Fonseca TL, Fernandes GW, McAninch EA, et al. Perinatal deiodinase 2 expression in hepatocytes defines epigenetic susceptibility to liver steatosis and obesity. Proc Natl Acad Sci U S A, 2015,112(45):14018-14023. [12] Fonseca TL, Fernandes GW, McAninch EA, et al. Perinatal deiodinase 2 expression in hepatocytes defines epigenetic susceptibility to liver steatosis and obesity. Proc Natl Acad Sci U S A, 2015,112(45):14018-14023. [13] Gionfra F, De Vito P, Pallottini V, et al. The role of thyroid hormones in hepatocyte proliferation and liver cancer. Front Endocrinol (Lausanne), 2019,10:532. [14] Sinha RA, Bruinstroop E, Singh BK, et al. Nonalcoholic fatty liver disease and hypercholesterolemia: Roles of thyroid hormones, metabolites, and agonists. Thyroid, 2019,29(9):1173-1191. [15] Baumann CT, Maruvada P, Hager GL, et al. Nuclear cytoplasmic shuttling by thyroid hormone receptors. multiple protein interactions are required for nuclear retention. J Biol Chem,2001,276(14):11237-11245. [16] Hönes GS, Rakov H, Logan J, et al. Noncanonical thyroid hormone signaling mediates cardiometabolic effects in vivo. Proc Natl Acad Sci U S A, 2017,114(52):E11323-E11332. [17] Jornayvaz FR, Lee HY, Jurczak MJ, et al. Thyroid hormone receptor-α gene knockout mice are protected from diet-induced hepatic insulin resistance. Endocrinology, 2012,153(2):583-591. [18] Araki O, Ying H, Zhu XG, et al. Distinct dysregulation of lipid metabolism by unliganded thyroid hormone receptor isoforms. Mol Endocrinol, 2009, 23(3):308-315. [19] Krause C, Grohs M, El Gammal AT, et al. Reduced expression of thyroid hormone receptor βin human nonalcoholic steatohepatitis. Endocr Connect, 2018, 7(12):1448-1456. [20] Mashek DG. Hepatic fatty acid trafficking: multiple forks in the road. Adv Nutr, 2013,4(6):697-710. [21] Feng X, Jiang Y, Meltzer P, et al.Thyroid hormone regulation of hepatic genes in vivo detected by complementary DNA microarray. Mol Endocrinol, 2000, 14(7):947-955. [22] Wang Y, Viscarra J, Kim SJ, et al. Transcriptional regulation of hepatic lipogenesis. Nat Rev Mol Cell Biol, 2015,16(11):678-689. [23] Grasselli E, Voci A, Demori I, et al. Triglyceride mobilization from lipid droplets sustains the anti-steatotic action of iodothyronines in cultured rat hepatocytes. Front Physiol, 2016,6:418. [24] Simó R, Hernández C, Sáez-López C, et al. Thyroid hormone upregulates zinc-α2-glycoprotein production in the liver but not in adipose tissue. PLoS One, 2014,9(1):e85753. [25] Sinha RA, You SH, Zhou J, et al. Thyroid hormone stimulates hepatic lipid catabolism via activation of autophagy. J Clin Invest, 2012,122(7):2428-2438. [26] Sinha RA, Singh BK, Yen PM. Direct effects of thyroid hormones on hepatic lipid metabolism. Nat Rev Endocrinol,2018,14(5):259-269. [27] Ness GC, Pendleton LC, Li YC, et al. Effect of thyroid hormone on hepatic cholesterol 7 alpha hydroxylase, LDL receptor, HMG-CoA reductase, farnesyl pyrophosphate synthetase and apolipoprotein A-I mRNA levels in hypophysectomized rats. Biochem Biophys Res Commun,1990,172(3):1150-1156. [28] Lopez D, Abisambra Socarrás JF, Bedi M, et al. Activation of the hepatic LDL receptor promoter by thyroid hormone. Biochim Biophys Acta, 2007, 1771(9):1216-1225. [29] Iannucci LF, Cioffi F, Senese R, et al. Metabolomic analysis shows differential hepatic effects of T2 and T3 in rats after short-term feeding with high fat diet.Sci Rep, 2017,7(1):2023. [30] Chi HC, Tsai CY, Tsai MM, et al. Molecular functions and clinical impact of thyroid hormone-triggered autophagy in liver-related diseases. J Biomed Sci, 2019,26(1):24. [31] Bonde Y, Breuer O, Lütjohann D, et al. Thyroid hormone reduces PCSK9 and stimulates bile acid synthesis in humans. J Lipid Res, 2014,55(11):2408-2415. [32] Zhang X, Song Y, Feng M, et al. Thyroid-stimulating hormone decreases HMG-CoA reductase phosphorylation via AMP-activated protein kinase in the liver. J Lipid Res, 2015,56(5):963-971. [33] Song Y, Xu C, Shao S, et al. Thyroid-stimulating hormone regulates hepatic bile acid homeostasis via SREBP-2/HNF-4α/CYP7A1 axis. J Hepatol, 2015, 62(5): 1171-1179. |