[1] Powell EE, Wong VW, Rinella M. Non-alcoholic fatty liver disease. Lancet,2021,397(10290):2212-2224. [2] Friedman SL, Neuschwander-Tetri BA, Rinella M, et al. Mechanisms of NAFLD development and therapeutic strategies. Nat Med,2018,24(7):908-922. [3] Loomba R, Friedman SL, Shulman GI. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell,2021,184(10):2537-2564. [4] Schwabe RF, Tabas I, Pajvani UB. Mechanisms offibrosis development in nonalcoholic steatohepatitis. Gastroenterology,2020,158(7):1913-1928. [5] Bessone F, Razori MV, Roma MG. Molecular pathways of nonalcoholic fatty liver disease development and progression. Cell Mol Life Sci,2019,76(1):99-128. [6] Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism,2016,65(8):1038-1048. [7] Alzaid F, Lagadec F, Albuquerque M, et al. IRF5 governs liver macrophage activation that promotes hepatic fibrosis in mice and humans. JCI Insight,2016,1(20):e88689. [8] Kondylis V, Pasparakis M. RIP kinases in liver cell death, inflammation and cancer. Trends Mol Med,2019,25(1):47-63. [9] Gaul S, Leszczynska A, Alegre F, et al. Hepatocyte pyroptosis and release of inflammasome particles induce stellate cell activation and liver fibrosis. J Hepatol,2021,74(1):156-167. [10] Kazankov K, Jørgensen SMD, Thomsen KL, et al. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat Rev Gastroenterol Hepatol,2019,16(3):145-159. [11] Huby T, Gautier EL. Immune cell-mediated features of non-alcoholic steatohepatitis. Nat Rev Immunol,2021:1-15. [12] Tacke F. Targeting hepatic macrophages to treat liver diseases. J Hepatol,2017,66(6):1300-1312. [13] Yona S, Kim KW, Wolf Y, et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity,2013,38(1):79-91. [14] Guilliams M, Bonnardel J, Haest B, et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell,2022,185(2):379-396,e38. [15] Tran S, Baba I, Poupel L, et al. Impaired Kupffercell self-renewal alters the liverresponse to lipid overload during non-alcoholic steatohepatitis. Immunity,2020,53(3):627-640. [16] Devisscher L, Scott CL, Lefere S, et al. Non-alcoholic steatohepatitis induces transient changes within the liver macrophage pool. Cell Immunol,2017,322:74-83. [17] Seidman JS, Troutman TD, Sakai M, et al. Niche-specific reprogramming of epigenetic landscapes drives myeloid cell diversity in nonalcoholic steatohepatitis. Immunity,2020,52(6):1057-1074. [18] Daemen S, GainullinaA, Kalugotla G, et al. Dynamic shifts in the composition of resident and recruited macrophages influence tissue remodeling in NASH. Cell Rep,2021,34(2):108626. [19] Remmerie A, MartensL, Thoné T, et al. Osteopontinexpression identifies a subset of recruited macrophages distinct from Kupffercells in the fatty liver. Immunity,2020,53(3):641-657. [20] De Muynck K, Vanderborght B, Van Vlierberghe H, et al. The gut-liver axis in chronic liver disease: A macrophage perspective. Cells,2021,10(11):2959. [21] Cai B, Dongiovanni P, Corey KE, et al. Macrophage MerTKpromotes liver fibrosis in nonalcoholic steatohepatitis. Cell Metab,2020,31(2):406-421. [22] Hong CH, Ko MS, Kim JH, et al. Sphingosine 1-phosphate receptor 4 promotes nonalcoholic steatohepatitis by activating NLRP3 inflammasome. Cell MolGastroenterol Hepatol,2022,13(3):925-947. [23] Schuster S, Cabrera D, Arrese M, et al. Triggering and resolution of inflammation in NASH. Nat Rev Gastroenterol Hepatol,2018,15(6):349-364. [24] Musso G, Cassader M,Paschetta E, et al. Bioactive lipid species and metabolic pathways in progression and resolution of nonalcoholic steatohepatitis. Gastroenterology,2018,155(2):282-302. [25] Yao Q, Li S, Li X, et al. Myricetinmodulates macrophage polarization and mitigates liver inflammation and fibrosis in a murine model of nonalcoholic steatohepatitis. Front Med (Lausanne),2020,7:71. [26] Spite M. Resolving inflammation in nonalcoholic steatohepatitis. J Clin Invest,2019,129(4):1524-1526. |