[1] Hubscher SG. Histological assessment of non-alcoholic fatty liver disease. Histopathology, 2006, 49(12):450-465.
[2] Serviddio G, Bellanti F, Vendemiale G, et al. Mitochondrial dysfunction in nonalcoholic steatohepatitis. Expert Rev Gastroenterol Hepatol, 2011, 5(2): 233-244.
[3] Wieckowska A, Zein NN, Yerian LM, et al. In vivo assessment of liver cell apoptosis as a novel biomarker of disease severity in nonalcoholic fatty liver disease. Hepatology, 2006, 44(1):27–33.
[4] Wang L, Lv Y, Yao H., et al. Curcumin prevents the non-alcoholic fatty hepatitis via mitochondria protection and apoptosis reduction. Int J Clin Exp Pathol, 2015, 8(9):11503-11509.
[5] Yu Q, Liu Y, Wu Y, et al. Dihydrocurcumin ameliorates the lipid accumulation, oxidative stress and insulin resistance in oleic acid-induced L02 and HepG2 cells. Biomed Pharmacother, 2018, 103(2):1327-1336.
[6] 尹海燕, 邱敏珊, 何丹,等. 姜黄素对脓毒症大鼠肝细胞的保护作用. 中华危重病急救医学, 2017, 29(2):162-166.
[7] Liu Y, Liao L, Chen Y, et al. Effects of daphnetin on lipid metabolism, insulin resistance and oxidative stress in OA-treated HepG2 cells. Mol Med Rep, 2019, 19(6): 4673-4684.
[8] Wang PX, Ji YX, Zhang XJ, et al. Targeting CASP8 and FADD-like apoptosis regulator ameliorates nonalcoholic steatohepatitis in mice and nonhuman primates. Nat Med, 2017, 23(4):439-449.
[9] Zhang YX, Jie H, Meng C, et al. Silibinin ameliorates steatosis and insulin resistance during non-alcoholic fatty liver disease development partly through targeting IRS-1/PI3K/Akt pathway. Int Immunopharmacol, 2013, 17(3):714-720.
[10] Liu Y, Yu Q, Chen Y. Effect of silibinin on CFLAR-JNK pathway in oleic acid-treated HepG2 cells. Biomed Pharmacother, 2018, 108(12):716-723.
[11] Eli M, Angela D, Martha Q L, et al. Elevation of serum lactate dehydrogenase in AL amyloidosis reflects tissue damage and is an adverse prognostic marker in patients not eligible for stemcell transplantation. Br J Haematol, 2017, 178(6):888-895.
[12] Barmatz VS, Krelin Y, Chen Q. VDAC1 as a player in mitochondria-mediated apoptosis and target for modulating apoptosis. Curr Med Chem, 2017, 24(40):4435-4446.
[13] Varda SB, Yakov K, Quan C. VDAC1 as a player in mitochondria-mediated apoptosis and target for modulating apoptosis. Curr Med Chem, 2017, 24(40):4435-4446.
[14] Xu L L, Zheng X, Wang Y H, et al. Berberine protects acute liver failure in mice through inhibiting inflammation and mitochondria-dependent apoptosis. Eur J Phar, 2018, 8(19):161-168.
[15] Sunwoo P, Whasun L, Fuller WB, et al. Naringenin induces mitochondria-mediated apoptosis and endoplasmic reticulum stress by regulating MAPK and AKT signal transduction pathways in endometriosis cells. Mol Hum Reprod, 2017, 23(12):842-854.
[16] Campbell K J, Tait SWG. Targeting BCL-2 regulated apoptosis in cancer. Open Biol, 2018, 8(5):180002.
[17] Sei K, Tadahiro T, Tetsushi S, et al. PLEKHN1 promotes apoptosis by enhancing Bax-Bak hetro-oligomerization through interaction with Bid in human colon cancer. Cell Death Discov, 2018, 4(1):11-15.
[18] Hyemin S, Jinhyun R, Woong SY, et al. Resveratrol ameliorates retinal ischemia/reperfusion injury in C57BL/6J mice via downregulation of caspase-3. Curr Eye Res, 2017, 42(12):1650-1658.
[19] Farideh N, Heshu SR, Rosfarizan M, et al. Cytotoxic effect of magnetic iron oxide nanoparticles synthesized via seaweed aqueous extract. Inter J Nanomed, 2014, 9(11), 2479-2488. |