实用肝脏病杂志 ›› 2026, Vol. 29 ›› Issue (1): 117-120.doi: 10.3969/j.issn.1672-5069.2026.01.030

• 肝癌 • 上一篇    下一篇

MRI动态增强和弥散加权成像判断TACE术治疗的肝细胞癌肿瘤活性价值研究*

宋乐乐, 陈顺军, 张亚斌   

  1. 471003 河南省洛阳市 河南科技大学第一附属医院影像科(宋乐乐,张亚斌);超声科(陈顺军)
  • 收稿日期:2025-07-23 出版日期:2026-01-10 发布日期:2026-02-04
  • 作者简介:宋乐乐,女,41岁,硕士研究生,主治医师。E-mail:songlle15@163.com
  • 基金资助:
    *河南省医学科技攻关计划(联合共建)项目(编号:LHGJ20190562)

Dynamic contrast-enhanced MRI and diffusion-weighted imaging for assessing tumor viability following TACE in patients with hepatocellular carcinoma

Song Lele, Chen Shunjun, Zhang Yabin   

  1. Department of Radiology, First Affiliated Hospital, Henan University of Science and Technology, Luoyang 471003, Henan Province, China
  • Received:2025-07-23 Online:2026-01-10 Published:2026-02-04

摘要: 目的 探讨应用磁共振成像动态增强扫描(DCE-MRI)和弥散加权成像(DWI)判断肝动脉化疗栓塞术(TACE)术后肝细胞癌(HCC)患者肿瘤活性的价值。方法 2019年1月~2025年2月我院诊治的89例HCC患者,均接受DCE-MRI和DWI检查及TACE术治疗。术后行数字减影血管造影(DSA)检查,判断肿瘤活性和再次行DCE-MRI检查,记录容量转移常数(Ktrans)、速率常数(Kep)、血管外细胞外间隙容积比(Ve】和采用DWI测量表观扩散系数(ADC)。绘制ROC曲线评估识别肿瘤活性的效能。结果 在TACE术行DSA检查,检出96个肿瘤活性区域,95个邻近正常肝组织区域和81个肿瘤坏死区域;肿瘤活性区Ktrans和Kep分别为(1.1±0.3)min-1和(3.0±1.3)min-1,显著高于邻近正常肝组织区【分别为(0.6±0.2)min-1和(1.4±0.4)min-1,P<0.05】或肿瘤坏死区【分别为(0.3±0.2)min-1和(1.0±0.6)min-1,P<0.05】,而ADC值为(0.9±0.3)×10-3mm/s2,显著低于邻近正常肝组织区【(1.5±0.5)×10-3mm/s2,P<0.05】或肿瘤坏死区【(1.8±0.6)×10-3mm/s2,P<0.05】;ROC分析显示,Ktrans、Kep和ADC联合诊断TACE术HCC患者肿瘤活性的AUC为0.973,其敏感度和特异度分别为96.0%和96.4%。结论 DCE-MRI定量参数联合ADC值可有效评估TACE术后HCC组织肿瘤活性,具有很大的临床应用价值。

关键词: 肝细胞癌, 磁共振成像动态增强, 弥散加权成像, 肝动脉化疗栓塞术, 肿瘤活性, 诊断

Abstract: Objective The aim of this study was to investigate dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging (DWI) for assessing tumor viability (TV) following transarterial chemoembolization (TACE) in patients with hepatocellular carcinoma (HCC). Methods 89 patients with HCC were encountered in our hospital between January 2019 and February 2025, and all underwent TACE treatment. Patients received DCE-MRI for volume transfer constant (Ktrans), rate constant (Kep) and extracellular extravascular volume fraction (Ve), and DWI for apparent diffusion coefficient (ADC) measurements. TV was evaluated bydigital subtraction angiography (DSA) after TACE. Receiver operating characteristic (ROC) curves were plotted to evaluate the diagnostic performance. Results DSA after TACE found 96 active tumor regions, 95 adjacent liver regions and 81 necrotic tumor regions in our series; Ktrans and Kep in active tumor regions were (1.1±0.3)min-1 and (3.0±1.3)min-1, both significantly higher than [(0.6±0.2)min-1 and (1.4±0.4)min-1, respectively, P<0.05] in adjacent liver regions or [(0.3±0.2)min-1 and (1.0±0.6)min-1, respectively, P<0.05] in necrotic tumor regions, while the ADC was (0.9±0.3)×10-3mm/s2, significantly lower than [(1.5±0.5)×10-3mm/s2, P<0.05] in adjacent liver regions or [(1.8±0.6)×10-3mm/s2, P<0.05] in necrotic tumor regions; ROC analysis showed that the AUC was 0.973, with sensitivity of 96.0% and specificity of 96.4%, when Ktrans and Kep were combined with ADC in judging TV after TACE treatment in patients with HCC. Conclusion DCE-MRI quantitative parameters and ADC could effectively assess TV after TACE in patients with HCC, which might help clinicians make further anti-tumor plans.

Key words: Hepatocellular carcinoma, Dynamic contrast-enhanced magnetic resonance imaging, Diffusion-weighted imaging, Transarterial chemoembolization, Tumor viability, Diagnosis